Several programming languages use garbage collectors (GCs) to automatically manage memory for the programmer. Such collectors must decide when to look for unreachable objects to free, which can have a large performance impact on some applications. In this preliminary work, we propose a design for a learned garbage collector that autonomously learns over time when to perform collections. By using reinforcement learning, our design can incorporate user-defined reward functions, allowing an autonomous garbage collector to learn to optimize the exact metric the user desires (e.g., request latency or queries per second). We conduct an initial experimental study on a prototype, demonstrating that an approach based on tabular Q learning may be promising.
Data warehouses organize data in a columnar format to enable faster scans and better compression. Modern systems offer a variety of column encodings that can reduce storage footprint and improve query performance. Selecting a good encoding scheme for a particular column is an optimization problem that depends on the data, the query workload, and the underlying hardware.We introduce Learned Encoding Advisor (LEA), a learned approach to column encoding selection. LEA is trained on synthetic datasets with various distributions on the target system. Once trained, LEA uses sample data and statistics (such as cardinality) from the user's database to predict the optimal column encodings. LEA can optimize for encoded size, query performance, or a combination of the two. Compared to the heuristic-based encoding advisor of a commercial column store on TPC-H, LEA achieves 19% lower query latency while using 26% less space.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.