Cholangiocarcinoma (CCA) is a rare but highly aggressive type of malignancy. MicroRNA (miR)-25 has been demonstrated to be involved in the genesis of numerous cancer types. The aim of the present study was to investigate the prognostic value and functional role of miR-25 in CCA. The expression of miR-25 was determined by reverse transcription-quantitative (RT-q)PCR. The association between miR-25 expression and clinicopathological features was analyzed using the χ 2 test. Kaplan-Meier survival analysis and Cox linear regression were performed to explore the prognostic value of miR-25. The effects of miR-25 on the biological behavior of CCA cells were determined using loss-and gain-of-function experiments in CCA cell lines. Upregulated miR-25 expression was observed in CCA tissues and cell lines compared with that in the respective controls (all P<0.05). Patients with high expression of miR-25 in CCA tissues had a comparatively higher tumor-nodes-metastasis stage (P=0.026), a higher rate of lymph node metastasis (P=0.032) and a shorter overall survival rate (log-rank P=0.022). miR-25 was determined to be an independent prognostic factor for CCA patients (P=0.036). In vitro, transfection with miR-25 inhibitor suppressed cell viability, migration and invasion, while miR-25 mimics had the opposite effect. These results indicated that miR-25 functions as an oncogene and is involved in tumor progression in CCA. miR-25 may serve as a prognostic biomarker and a potential therapeutic target for CCA treatment.
BACKGROUND: Long non-coding RNAs (lncRNAs) were detected extraordinarily expressed in various tumors and could combine with microRNAs (miRNAs) to play important role in tumor cells. This study is to explore the role of lncRNA RP11-909N17.2 in NSCLC and discuss in what way it functions in NSCLC. METHODS: 120 NSCLC patients were enlisted in this study. Expression levels of lncRNA RP11-909N17.2 and miR-767-3p were detected and the correlation between lncRNA RP11-909N17.2 expression and the clinical data characteristics was analyzed. Prognosis potential of lncRNA RP11-909N17.2 was inferred with Kaplan-Meier and multivariate Cox regression assays. Biological functions of NSCLC cells were accessed by cell counting Kit-8, transwell migration and invasion assay. Mechanism of RP11-909N17.2 action on NSCLC cells was investigated by luciferase activity assay with wide-type or mutation. RESULTS: LncRNA RP11-909N17.2 has an ascendant expression while miR-767-3p has descended one in NSCLC tissue specimens and cells. Over-expression of lncRNA RP11-909N17.2 can shorten the overall survival period of NSCLC patients when compared with low expression. Knockdown of lncRNA RP11-909N17.2 suppressed biology function of NSCLC cell including proliferation, migration, and invasion. CONCLUSION: LncRNA RP11-909N17.2 can be developed into a prognostic index for NSCLC. LncRNA RP11-909N17.2 plays a promoting role in NSCLC cells possibly by binding miR-767-3p as a sponge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.