Background:The physiological functions of the PRL phosphatases are poorly understood. Results: PRL2 deficiency causes placental insufficiency, decreased spongiotrophoblast proliferation, and growth retardation. Conclusion: PRL2 plays an important role in placental development by down-regulating PTEN and activating Akt. Significance: This study provides the first evidence of an essential function for PRL2 and offers a biochemical basis for PRLs as oncoproteins to repress PTEN expression.
PRL oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of specific chemical probes. In this study, we address this issue by exploiting a unique property of PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and several analogs which disrupt PRL1 trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our results validate a trimerization-dependent signaling mechanism for PRL and offer proof-of-concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers
Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in hematopoietic stem cells is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family [aka PRL (phosphatase of regenerating liver) phosphatases], consisting of PTP4A1/PRL1, PTP4A2/PRL2 and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self-renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling. Importantly, we discovered that the ability of PTP4A2 to enhance HSPC proliferation and activation of AKT and ERK signaling depends on its phosphatase activity. Furthermore, we found that PTP4A2 is important for SCF-mediated HSPC proliferation and loss of Ptp4a2 decreased the ability of oncogenic KIT/D814V mutant in promoting hematopoietic progenitor cell proliferation. Thus, PTP4A2 plays critical roles in regulating HSC self-renewal and mediating SCF/KIT signaling.
Background:The mechanism for the oncogenic phosphatase PRL-1 remains undefined. Results: We identified and characterized a novel PRL-1-binding protein, p115 RhoGAP. Conclusion: PRL-1 activates the ERK1/2 pathway by displacing MEKK1 from p115 RhoGAP and RhoA by preventing its interaction with p115 RhoGAP. Significance: This study offers a novel strategy for anticancer therapeutics by blocking the interaction between PRL-1 and p115 RhoGAP.
Background:The PRLs are oncogenic when overexpressed but their physiological function is not well defined. Results: PRL2-deficient mice exhibit testis hypotrophy, decreased sperm production, and impaired reproductive potential. Conclusion: PRL2 promotes Kit signaling and germ cell survival by down-regulating PTEN. Significance: The study reveals the biological importance of PRL2 in spermatogenesis and identifies PRL2 as a novel target for cancer and male contraception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.