Background Subchondral bone sclerosis is a major feature of osteoarthritis (OA), and bone marrow mesenchymal stem cells (BMSCs) are presumed to play an important role in subchondral bone sclerosis. Accumulating evidence has shown that stromal cell-derived factor-1α (SDF-1α) plays a key role in bone metabolism-related diseases, but its role in OA pathogenesis remains largely unknown. The purpose of this study was to explore the role of SDF-1α expressed on BMSCs in subchondral bone sclerosis in an OA model. Methods In the present study, C57BL/6J mice were divided into the following three groups: the sham control, destabilization of the medial meniscus (DMM), and AMD3100-treated DMM (DMM + AMD3100) groups. The mice were sacrificed after 2 or 8 weeks, and samples were collected for histological and immunohistochemical analyses. OA severity was assessed by performing hematoxylin and eosin (HE) and safranin O-fast green staining. SDF-1α expression in the OA model was measured using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (q-PCR), and immunohistochemistry. Micro-CT was used to observe changes in subchondral bone in the OA model. CD44, CD90, RUNX2, and OCN expression in subchondral bone were measured using q-PCR and immunohistochemistry. In vitro, BMSCs were transfected with a recombinant lentivirus expressing SDF-1α, an empty vector (EV), or siRNA-SDF-1α. Western blot analysis, q-PCR, and immunofluorescence staining were used to confirm the successful transfection of BMSCs. The effect of SDF-1α on BMSC proliferation was evaluated by performing a CCK-8 assay and cell cycle analysis. The effect of SDF-1α on the osteogenic differentiation of BMSCs was assessed by performing alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Cyclin D1, RUNX2 and OCN expression were measured using Western blot analysis, q-PCR, and immunofluorescence staining. Results SDF-1α expression in the DMM-induced OA model increased. In the DMM + AMD3100 group, subchondral bone sclerosis was alleviated, OA was effectively relieved, and CD44, CD90, RUNX2, and OCN expression in subchondral bone was decreased. In vitro, high levels of SDF-1α promoted BMSC proliferation and increased osteogenic differentiation. Cyclin D1, RUNX2, and OCN expression increased. Conclusion The results of this study reveal a new molecular mechanism underlying the pathogenesis of OA. The targeted regulation of SDF-1α may be clinically effective in suppressing OA progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.