Our results suggest that prophages (possibly animal-associated) have conditioned bacterial adaptation and ability to cause infections in neonates and adults, and support a role of lysogeny with the emergence of GBS as a pathogen in human.
Group B
Streptococcus
(GBS) is a major cause of invasive disease in neonates worldwide. Monitoring data have revealed a continuing trend toward an increase in neonatal GBS infections, despite the introduction of preventive measures. We investigated this trend, by performing the first ever characterization of the prophage content for 106 GBS strains causing neonatal infections between 2002 and 2018. We determined whether the genome of each strain harbored prophages, and identified the insertion site of each of the prophages identified. We found that 71.7% of the strains carried at least one prophage, and that prophages genetically similar to livestock-associated phiD12, carrying genes potentially involved in GBS pathogenesis (e.g., genes encoding putative virulence factors and factors involved in biofilm formation, bacterial persistence, or adaptation to challenging environments) predominated. The phiD12-like prophages were (1) associated with CC17 and 1 strains (
p
= 0.002), (2) more frequent among strains recovered during the 2011–2018 period than among those from 2002–2010 (
p
< 0.001), and (3) located at two major insertion sites close to bacterial genes involved in host adaptation and colonization. Our data provide evidence for a recent increase in lysogeny in GBS, characterized by the acquisition, within the genome, of genetic features typical of animal-associated mobile genetic elements by GBS strains causing neonatal infection. We suggest that lysogeny and phiD12-like prophage genetic elements may have conferred an advantage on GBS strains for adaptation to or colonization of the maternal vaginal tract, or for pathogenicity, and that these factors are currently playing a key role in the increasing ability of GBS strains to infect neonates.
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.