In this study, the development of innovative tooling and end-effector systems for the assembly of a multifunctional thermoplastic fuselage is presented. The increasing demand for cleaner and new aircraft requires utilising novel materials and technologies. Advanced thermoplastic composites provide an excellent material option thanks to their weldability, low density, low overall production cost, improved fracture toughness and recyclability. However, to fully appreciate their potentials, new manufacturing approaches and techniques are needed. Hence, this project develops three end-effector solutions to demonstrate the feasibility of assembling a full-scale multifunctional-integrated thermoplastic lower fuselage shell, including the integration of a fully equipped floor and cargo structure. The developed assembly solution comprises three individual yet well-integrated tooling systems that allow housing the skin and assembly; picking, placing and welding of the assembly parts, i.e. clips and stringers; and welding of frames and floor beam sub-assemblies. The process of developing these systems including the end-user requirements, technical challenges, tooling and end-effectors design and manufacturing process are detailed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.