The subject of this paper is the current state of art in theory of continued fractions, intermediate fractions and their relation to the best rational approximations of the first and second kind. The paper provides an overview of the some well known and even some new properties of continued fractions, and the various terms associated with them. In addition to intermediate fractions, paper considers the fine intermediate fractions and gave some statements to position these fractions in the continued fraction representation of numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.