This paper presents an approach for the interactive visualization, exploration and interpretation of large multivariate time series. Interesting patterns in such datasets usually appear as periodic or recurrent behavior often caused by the interaction between variables. To identify such patterns, we summarize the data as conceptual states, modeling temporal dynamics as transitions between the states. This representation can visualize large datasets with potentially billions of examples. We extend the representation to multiple spatial granularities allowing the user to find patterns on multiple scales. The result is an interactive web-based tool called StreamStory. StreamStory couples the abstraction with several tools that map the abstractions back to domain-specific concepts using techniques from statistics and machine learning. It is aimed at users who are not experts in data analytics, minimizing the number of parameters to configure out-of-the-box. We use three real-world datasets to demonstrate how StreamStory can be used to perform three main visual analytics tasks: identify the main states of a complex system and map them back to data-specific concepts, find high-level and long-term periodic behavior and traverse the scales to identify which scales exhibit interesting phenomena. We find and interpret several known, as well as previously unknown patterns in these datasets.
With the rapid spread of the COVID-19 pandemic, the novel Meaningful Integration of Data Analytics and Services (MIDAS) platform quickly demonstrates its value, relevance and transferability to this new global crisis. The MIDAS platform enables the connection of a large number of isolated heterogeneous data sources, and combines rich datasets including open and social data, ingesting and preparing these for the application of analytics, monitoring and research tools. These platforms will assist public health authorities in: (i) better understanding the disease and its impact; (ii) monitoring the different aspects of the evolution of the pandemic across a diverse range of groups; (iii) contributing to improved resilience against the impacts of this global crisis; and (iv) enhancing preparedness for future public health emergencies. The model of governance and ethical review, incorporated and defined within MIDAS, also addresses the complex privacy and ethical issues that the developing pandemic has highlighted, allowing oversight and scrutiny of more and richer data sources by users of the system.
BackgroundHealthcare data is a rich yet underutilized resource due to its disconnected, heterogeneous nature. A means of connecting healthcare data and integrating it with additional open and social data in a secure way can support the monumental challenge policy-makers face in safely accessing all relevant data to assist in managing the health and wellbeing of all. The goal of this study was to develop a novel health data platform within the MIDAS (Meaningful Integration of Data Analytics and Services) project, that harnesses the potential of latent healthcare data in combination with open and social data to support evidence-based health policy decision-making in a privacy-preserving manner.MethodsThe MIDAS platform was developed in an iterative and collaborative way with close involvement of academia, industry, healthcare staff and policy-makers, to solve tasks including data storage, data harmonization, data analytics and visualizations, and open and social data analytics. The platform has been piloted and tested by health departments in four European countries, each focusing on different region-specific health challenges and related data sources.ResultsA novel health data platform solving the needs of Public Health decision-makers was successfully implemented within the four pilot regions connecting heterogeneous healthcare datasets and open datasets and turning large amounts of previously isolated data into actionable information allowing for evidence-based health policy-making and risk stratification through the application and visualization of advanced analytics.ConclusionsThe MIDAS platform delivers a secure, effective and integrated solution to deal with health data, providing support for health policy decision-making, planning of public health activities and the implementation of the Health in All Policies approach. The platform has proven transferable, sustainable and scalable across policies, data and regions.
For most events of at least moderate significance, there are likely tens, often hundreds or thousands of online articles reporting on it, each from a slightly different perspective. If we want to understand an event in depth, from multiple perspectives, we need to aggregate multiple sources and understand the relations between them. However, current news aggregators do not offer this kind of functionality. As a step towards a solution, we propose DiversiNews, a real-time news aggregation and exploration platfom whose main feature is a novel set of controls that allow users to contrast reports of a selected event based on topical emphases, sentiment differences and/or publisher geolocation. News events are presented in the form of a ranked list of articles pertaining to the event and an automatically generated summary. Both the ranking and the summary are interactive and respond in real time to user’s change of controls. We validated the concept and the user interface through user tests with positive results.
The global health situation due to the SARS-COV-2 pandemic motivated an unprecedented contribution of science and technology from companies and communities all over the world to fight COVID-19. In this paper, we present the impactful role of text mining and data analytics, exposed publicly through IRCAI's Coronavirus Watch portal. We will discuss the available technology and methodology, as well as the ongoing research based on the collected data.Povzetek: Opisana je vloga rudarjenja besedil in podatkovne analitike na primeru portala IRCAI's Coronavirus Watch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.