The electrical excitation of guided plasmonic modes at the nanoscale enables integration of optical nanocircuitry into nanoelectronics. In this context, exciting plasmons with a distinct modal field profile constitutes a key advantage over conventional single-mode integrated photonics. Here, we demonstrate the selective electrical excitation of the lowest-order symmetric and antisymmetric plasmonic modes in a two-wire transmission line. We achieve mode selectivity by precisely positioning nanoscale excitation sources, i.e., junctions for inelastic electron tunneling, within the respective modal field distribution. By using advanced fabrication that combines focused He-ion beam milling and dielectrophoresis, we control the location of tunnel junctions with sub-10 nm accuracy. At the far end of the two-wire transmission line, the guided plasmonic modes are converted into far-field radiation at separate spatial positions showing two distinct orthogonal polarizations. Hence, the resulting device represents the smallest electrically driven light source with directly switchable polarization states with possible applications in display technology.
We recorded diffraction patterns using a commercially available slit and sensor over a wide range of experimental circumstances, including near- and far-field regimes and oblique incidence at large angles. We then compared the measured patterns with theoretical intensity curves calculated via the numerical integration of formulas derived within the framework of scalar diffraction theory. Experiment and theory show particularly good agreement when the first Rayleigh–Sommerfeld (R-S) formula is used. The Kirchhoff formula, though problematic in the context of mathematical consistency, agrees with the first R-S formula, even for large incidence angles, whereas the second R-S formula differs visibly. To obtain such a good agreement, we replaced the assumption of an incident plane wave with that of a Gaussian beam and implemented geometric corrections to account for slit imperfections. These results reveal how the scope of scalar diffraction theory can be extended with a small set of auxiliary assumptions.
Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e., nanoantennas, wavelength selectivity can be introduced to such detectors through geometry-dependent resonances. Also, additional functionality, like electronic responsivity switching and polarization detection, has been realized. However, previous devices consisted of large arrays of nanostructures to achieve detectable photocurrents. Here we show that this concept can be scaled down to a single antenna level, resulting in detector dimensions well below the resonance wavelength of the device. Our design consists of a single electrically connected plasmonic nanoantenna covered with a wide-bandgap semiconductor allowing broadband photodetection in the visible/near-infrared via injection of hot carriers. We demonstrate electrical switching of the color sensitivity as well as polarization detection. Our results hold promise for the realization of ultrasmall photodetectors with advanced functionality.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.