A new method was introduced to investigate LG duct function. Water permeability of rabbit LG duct epithelium was measured by calculating filtration permeability. Fluid secretion of LG duct cells induced by carbachol or forskolin was also demonstrated. These results provide calculated values of lacrimal duct osmotic permeability and direct experimental evidence of LG duct fluid secretion.
Following a quantitative validation approach, we tested the AMBER ff03 and GAFF force fields with the TIP3P explicit water model in molecular dynamic simulations of β-peptide foldamers. The test sequences were selected to represent a wide range of folding behavior in water: compact helix, strand mimetic geometry, and the state of disorder. The combination AMBER ff03-TIP3P successfully predicted the experimentally observed conformational properties and reproduced the NOE distances and backbone (3)J coupling data at a good level. GAFF was unable to produce folded structures correctly due to its biased torsion potentials. We can recommend AMBER ff03-TIP3P for simulations involving β-peptide sequences in aqueous media including ordered and disordered structures.
The mimicry of protein-sized β-sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin-14 β-sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β-Residues with diverse structural properties were utilized: Homologous β(3) -amino acids, (1R,2S)-2-aminocyclopentanecarboxylic acid (ACPC), (1R,2S)-2-aminocyclohexanecarboxylic acid (ACHC), (1R,2S)-2-aminocyclohex-3-enecarboxylic acid (ACEC), and (1S,2S,3R,5S)-2-amino-6,6-dimethylbicyclo[3.1.1]heptane-3-carboxylic acid (ABHC). Six α/β-peptidic chains were constructed in both monomeric and disulfide-linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β-sheet formation in the 64-residue foldameric systems. Core replacement with (1R,2S)-ACHC was found to be unique among the β-amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen-bonding network and to fit sterically into the hydrophobic interior of the β-sandwich. The novel β-sandwich model containing 25 % unnatural building blocks afforded protein-like thermal denaturation behavior.
Antimicrobial foldamers reduce the antibiotic resistance in multi-drug resistant Gram-negative bacteria. They hyperpolarize the membrane at low concentrations by acting as selective ionophores, enhancing the GHK-potential across the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.