Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn 2+ ) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn 2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn 2+ accumulation in amacrine cell processes involves the Zn 2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn 2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn 2+ chelation extends for several days after nerve injury. These results show that retinal Zn 2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn 2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.T he optic nerve has been widely used to investigate the response of CNS neurons to injury because of its accessibility, anatomy, and functional importance. Under normal circumstances, retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate axons after the optic nerve has been damaged and soon undergo cell death, leaving victims of traumatic or ischemic nerve injury or degenerative conditions, such as glaucoma, with permanent visual losses. Optic nerve injury leads to numerous pathological changes in RGCs and reversing some of these changes improves cell survival, although these effects are often transitory and for the most part promote little or no axon regeneration (1-10). Regeneration per se can be induced by intraocular inflammation combined with elevated cAMP (11, 12), counteracting cell-intrinsic (13-15) or cellextrinsic (16, 17) suppressors of axon growth, oncomodulin and other growth factors (18-22), or elevated physiological activity (23,24). Some of these treatments act synergistically and enable a modest number of RGCs to reestablish connections with appropriate target areas in the brain (25-27). However, although these studies show that successful regeneration can occur in principle, most RGCs eventually die after optic nerve injury, and to date only a small fraction of surviving RGCs have been induced to regenerate axons (27). These observations imply the existence of other major, as yet unknown suppressors of cell survival and regeneration. Our results point to zinc dysregulation as a critical factor.Zinc is essential for many cellular functions. Covalently bound zinc is required for the activity of numerous enzymes and t...
Limiting the spread of the disease is key to controlling the COVID-19 pandemic. This includes identifying people who have been exposed to COVID-19, minimizing patient contact, and enforcing strict hygiene measures. To prevent healthcare systems from becoming overburdened, elective and non-urgent medical procedures and treatments have been postponed, and primary health care has broadened to include virtual appointments via telemedicine. Although telemedicine precludes the physical examination of a patient, it allows collection of a range of information prior to a patient's admission, and may therefore be used in preoperative assessment. This new tool can be used to evaluate the severity and progression of the main disease, other comorbidities, and the urgency of the surgical treatment as well as preferencing anesthetic procedures. It can also be used for effective screening and triaging of patients with suspected or established COVID-19, thereby protecting other patients, clinicians and communities alike.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.