This paper considers which work-related trip patterns are included in household travel surveys and which in commercial travel surveys and if there are certain patterns that are distinctly underrepresented in either one. The study is structured as a comparison between data from a household travel survey and data from a commercial travel survey. Both surveys were conducted in Germany and within close temporal proximity. We applied cluster analysis to identify differences in the data and identify work-related travel patterns. The results show that work-related travel patterns are quite complex. Although some patterns are covered in both surveys, mobile workers’ travel patterns in particular are not represented well in the household travel survey. Furthermore, our analysis shows that not all commercial trips are generated by motorized vehicles and a considerable share of work-related trips are undertaken using public transport or active modes of transport that are not covered by the commercial travel survey. The results indicate that researchers and transport planners creating travel demand models need to pay more attention to work-related travel behavior and acknowledge that depending on the area of study, traditional household travel surveys may not provide a complete sample of the population; however, simply adding data on commercial trips from commercial travel demand models to data from household travel surveys does not provide a complete picture of work-related travel either.
Durch den Wegfall der Fahrtätigkeit in vollautonomen Fahrzeugen ergeben sich neue Möglichkeiten die Fahrzeit zu nutzen. In der vorliegenden Studie wird auf Basis einer Stated-Preference-Befragung untersucht, welchen Tätigkeiten sich Personen in autonomen Fahrzeugen widmen würden und wie sich diese von der heutigen Zeitnutzung im Öffentlichen Verkehr unterschiedet. Die Ergebnisse lassen eine Vielzahl von Aktivitäten, insbesondere jedoch in den Bereichen Kommunikation und Freizeit, erwarten. Im Fahrzeug zu Arbeiten wird bei Vollzeit-Erwerbstätigen im Mittel zu 9,1% der Fahrzeit erwartet, bei Teilzeit-Beschäftigen zu 6,7%. Aufgrund dieser geringen Zeitanteile ist davon auszugehen, dass sich durch autonome Fahrzeuge insgesamt leichte Veränderungen bei den Aktivitäts- und Wegemustern zeigen werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.