X-ray imaging, based on ionizing radiation, can be used to determine bone age by examining distal growth plate fusion in the ulna and radius bones. Legal age determination approaches based on ultrasound signals exist but are unsuitable to reliably determine bone age. We present a low-cost, mobile system that uses one-dimensional ultrasound radio frequency signals to obtain a robust binary classifier enabling the determination of bone age from data of girls and women aged 9 to 24 years. These data were acquired as part of a clinical study conducted with 148 subjects. Our system detects the presence or absence of the epiphyseal plate by moving ultrasound array transducers along the forearm, measuring reflection and transmission signals. Even though classical digital signal processing methods did not achieve a robust classifier, we achieved an F1 score of approximately 87% for binary classification of completed bone growth with machine learning approaches, such as the gradient boosting machine method CatBoost. We demonstrate that our ultrasound system can classify the fusion of the distal growth plate of the radius bone and the completion of bone growth with high accuracy. We propose a non-ionizing alternative to established X-ray imaging methods for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.