Abstract. Partitioning uncertainty in projections of future climate change into contributions from internal variability, model response uncertainty and emissions scenarios has historically relied on making assumptions about forced changes in the mean and variability. With the advent of multiple single-model initial-condition large ensembles (SMILEs), these assumptions can be scrutinized, as they allow a more robust separation between sources of uncertainty. Here, the framework from Hawkins and Sutton (2009) for uncertainty partitioning is revisited for temperature and precipitation projections using seven SMILEs and the Coupled Model Intercomparison Project CMIP5 and CMIP6 archives. The original approach is shown to work well at global scales (potential method bias < 20 %), while at local to regional scales such as British Isles temperature or Sahel precipitation, there is a notable potential method bias (up to 50 %), and more accurate partitioning of uncertainty is achieved through the use of SMILEs. Whenever internal variability and forced changes therein are important, the need to evaluate and improve the representation of variability in models is evident. The available SMILEs are shown to be a good representation of the CMIP5 model diversity in many situations, making them a useful tool for interpreting CMIP5. CMIP6 often shows larger absolute and relative model uncertainty than CMIP5, although part of this difference can be reconciled with the higher average transient climate response in CMIP6. This study demonstrates the added value of a collection of SMILEs for quantifying and diagnosing uncertainty in climate projections.
Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected future climate change based on a new generation of climate models. To extract reliable estimates of future warming and related uncertainties from these models, the spread in their projections is often translated into probabilistic estimates such as the mean and likely range. Here, we use a model weighting approach, which accounts for the models' historical performance based on several diagnostics as well as model interdependence within the CMIP6 ensemble, to calculate constrained distributions of global mean temperature change. We investigate the skill of our approach in a perfect model test, where we use previous-generation CMIP5 models as pseudo-observations in the historical period. The performance of the distribution weighted in the abovementioned manner with respect to matching the pseudo-observations in the future is then evaluated, and we find a mean increase in skill of about 17 % compared with the unweighted distribution. In addition, we show that our independence metric correctly clusters models known to be similar based on a CMIP6 “family tree”, which enables the application of a weighting based on the degree of inter-model dependence. We then apply the weighting approach, based on two observational estimates (the fifth generation of the European Centre for Medium-Range Weather Forecasts Retrospective Analysis – ERA5, and the Modern-Era Retrospective analysis for Research and Applications, version 2 – MERRA-2), to constrain CMIP6 projections under weak (SSP1-2.6) and strong (SSP5-8.5) climate change scenarios (SSP refers to the Shared Socioeconomic Pathways). Our results show a reduction in the projected mean warming for both scenarios because some CMIP6 models with high future warming receive systematically lower performance weights. The mean of end-of-century warming (2081–2100 relative to 1995–2014) for SSP5-8.5 with weighting is 3.7 ∘C, compared with 4.1 ∘C without weighting; the likely (66%) uncertainty range is 3.1 to 4.6 ∘C, which equates to a 13 % decrease in spread. For SSP1-2.6, the weighted end-of-century warming is 1 ∘C (0.7 to 1.4 ∘C), which results in a reduction of −0.1 ∘C in the mean and −24 % in the likely range compared with the unweighted case.
Abstract. Partitioning uncertainty in projections of future climate change into contributions from internal variability, model response uncertainty, and emissions scenarios has historically relied on making assumptions about forced changes in the mean and variability. With the advent of multiple Single-Model Initial-Condition Large Ensembles (SMILEs), these assumptions can be scrutinized, as they allow a more robust separation between sources of uncertainty. Here, the iconic framework from Hawkins and Sutton (2009) for uncertainty partitioning is revisited for temperature and precipitation projections using seven SMILEs and the Climate Model Intercomparison Projects CMIP5 and CMIP6 archives. The original approach is shown to work well at global scales (potential method error
Uncertainty in model projections of future climate change arises due to internal variability, multiple possible emission scenarios, and different model responses to anthropogenic forcing. To robustly quantify uncertainty in multi-model ensembles, inter-dependencies between models as well as a models ability to reproduce observations should be considered. Here, a model weighting approach, which accounts for both independence and performance, is applied to European temperature and precipitation projections from the CMIP5 archive. Two future periods representing mid-and endof-century conditions driven by the high-emission scenario RCP8.5 are investigated. To inform the weighting, six diagnostics based on three observational estimates are used to also account for uncertainty in the observational record. Our findings show that weighting the ensemble can reduce the interquartile spread by more than 20% in some regions, increasing the reliability of projected changes. The mean temperature change is most notably impacted by the weighting in the Mediterranean, where it is found to be 0.35°C higher than the unweighted mean in the end-of-century period. For precipitation the largest differences are found for Northern Europe, with a relative decrease in precipitation of 2.4% and 3.4% for the two future periods compared to the unweighted case. Based on a perfect model test, it is found that weighting the ensemble leads to an increase in the investigated skill score for temperature and precipitation while minimizing the probability of overfitting.
Atmospheric blocking is an important contributor to European temperature variability. It can trigger cold and warm spells, which is of specific relevance in spring because vegetation is particularly vulnerable to extreme temperatures in the growing season. The spring season is investigated as a transition period from predominant connections of blocking with cold spells in winter to predominant connections of blocking with warm spells in summer. Extreme temperatures are termed cold or warm spells if temperature stays outside the 10th to 90th percentile range for at least six consecutive days. Cold and warm spells in Europe over 1979–2014 are analyzed in observations from the European daily high-resolution gridded dataset (E-OBS) and the connection to blocking is examined in geopotential height fields from ERA-Interim. A highly significant link between blocking and cold and warm spells is found that changes during spring. Blocking over the northeastern Atlantic and Scandinavia is correlated with the occurrence of cold spells in Europe, particularly early in spring, whereas blocking over central Europe is associated with warmer conditions, particularly from March onward. The location of the block also impacts the spatial distribution of temperature extremes. More than 80% of cold spells in southeastern Europe occur during blocking whereas warm spells are correlated with blocking mainly in northern Europe. Over the analysis period, substantial interannual variability is found but also a decrease in cold spells and an increase in warm spells. The long-term change to a warmer climate holds the potential for even higher vulnerability to spring cold extremes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.