Electric vehicles are a mobility innovation that can help significantly reduce greenhouse gas emissions and mitigate climate change. However, increasing numbers of electric vehicles require the construction of a dense charging infrastructure with a sufficient number of chargers. Based on the identified requirements for existing electric vehicle users and potential new customers, the paper proposes a charging point model for an urban area equipped with a local transformer station and a sufficient number of low-power chargers. In particular, the model focuses on efficient use of chargers throughout the day, considering private rental of chargers paid by residents in the evening. The model uses an optimization method that compares the non-covered fixed costs due to unsold electricity to nonresidents and the annualized costs of building an additional transformer. The proposed optimal charging point solution was tested in a case study using real data capturing users’ habits and their arrivals in and departures from the car park. As our model results show, the great benefit of a park-and-ride car park equipped with chargers consists of a simple increase in car park efficiency, ensuring sufficient numbers of private charging lots, optimizing operating costs, and supporting the development of electromobility.
Electric vehicles represent an innovation in mobility that can help significantly reduce greenhouse emissions and mitigate climate change. However, replacing internal combustion with electric vehicles is not enough. This replacement needs to be complemented with a change in the energy mix of individual countries towards renewable energy sources and efficient use of electricity generated as a secondary product. Recuperative braking energy from trains can serve as one source of such secondary energy. Following an analysis of recuperative energy generated and analysis of charging requirements of individual electric vehicles, the paper proposes a model of a charging site near train stations. Using this energy to charge electric vehicles helps to reduce energy consumption from the electricity grid and thus reduce carbon emissions. Compared to other articles, the proposed model ensures the efficient use of recuperative braking energy from trains by using the variable charging power function; thereby, the installation of additional battery storage is eliminated. Our model results show that the benefits of a car park with a reservation system near train stations increase the car park efficiency, provide a sufficient number of private charging points, contribute to efficient use of recovered energy, and reduce carbon emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.