Research on cognitive control has sparked increasing interest in recent years, as it is an important prerequisite for goal oriented human behavior. The paced auditory serial addition task (PASAT) has been used to test and train cognitive control functions. This adaptive, challenging task includes continuous performance feedback. Therefore, additional cognitive control capacities are required to process this information along with the already high task-load. The underlying neural mechanisms, however, are still unclear. To explore the neural signatures of the PASAT and particularly the processing of distractive feedback information, feedback locked event-related potentials were derived from 24 healthy participants during an adaptive 2-back version of the PASAT. Larger neural activation after negative feedback was found for feedback related negativity (FRN), P300, and late positive potential (LPP). In early stages of feedback processing (i.e., FRN), a larger difference between positive and negative feedback responses was associated with poorer overall performance. This association was inverted in later stages (i.e., P300 and LPP). Together, our findings indicate stage-dependent associations between neural activation after negative information and cognitive functioning. Conceivably, increased early responses to negative feedback signify distraction, whereas higher activity at later stages reflects cognitive control processes to preserve ongoing performance.
This contribution is concerned with the design of observers for a single mast stacker crane, which is used, e. g., for storage and removal of loads in automated warehouses. As the mast of such stacker cranes is typically a lightweight construction, the system under consideration is described by ordinary as well as partial differential equations, i. e., the system exhibits a mixed finite-/infinite-dimensional character. We will present two different observer designs, an Extended Kalman Filter based on a finite-dimensional system approximation, using the Rayleigh-Ritz method and an approach exploiting the port-Hamiltonian system representation for the mixed finite-/infinite-dimensional scenario where in particular the observer-error system should be formulated in the port-Hamiltonian framework. The mixed-dimensional observer and the Kalman Filter are employed to estimate the deflection of the beam based on signals acquired by an inertial measurement unit at the beam tip. Such an approach considerably simplifies mechatronic integration as it renders strain-gauges at the base of the mast obsolete. Finally, measurement results demonstrate the capability of these approaches for monitoring and vibration-rejection purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.