Thermoelectric (TE) devices are used in the form of Peltier coolers and as TE generators, with the latter producing electrical energy from waste heat, based on the Seebeck effect. In both cases, modeling of the TE device is a prerequisite for the design and control verification of the resulting overall energy system. To this end, the model has to be integrated seamlessly in an overall system model containing other electrical, thermodynamic, or even mechanical components. Following this premise, this paper presents a component-based model for TE devices described in the Modelica language. The model incorporates the temperature dependences of decisive material properties (Seebeck coefficient, thermal conductivity, and electrical resistivity) in 1-D spatial resolution. With the help of few additional geometrical parameters, e.g., the thickness of TE legs, the model is capable of describing the dynamic behavior of the TE device in accordance with the experimental results.
This contribution presents the modeling of compact Organic Rankine Cycle (ORC) power plants intended to generate electrical energy from waste heat. The component-oriented models are illustrated as a valuable means in system design and efficiency/profitability prediction of a potential product in consideration of varying boundary conditions. First, we demonstrate the modeling of two crucial components, one in a bottom-up manner and another one in a top-down manner, as well as the effective construction of a closed-loop system model. Secondly, all physical component models are systematically extended by their respective economic quantities (costs and profitrelevant energy production and consumption). On the system level, these quantities are generically merged with all legal subsidies and compensation that are applicable to the considered plant (with the German renewable energy source act serving as an example). Finally, using the integrative physico-economic models in dynamic system simulations, we show efficiency and profitability predictions of an exemplary ORC plant in two scenarios.Index Terms-Organic Rankine Cycle (ORC) modeling, Modelica, profitability prediction, integrative physicoeconomic modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.