Our understanding of biogenic volatile organic compound (BVOC) emissions improved substantially during the last years. Nevertheless, there are still large uncertainties of processes controlling plant carbon investment into BVOCs, of some biosynthetic pathways and their linkage to CO2 decarboxylation at central metabolic branching points. To shed more light on carbon partitioning during BVOC biosynthesis, we used an innovative approach combining δ13CO2 laser spectroscopy, high-sensitivity proton-transfer-reaction time-of-flight mass spectrometry and a multiple branch enclosure system in combination with position-specific 13C-metabolite labelling. Feeding experiments with position-specific 13C-labelled pyruvate, a central metabolite of BVOC synthesis, enabled online detection of carbon partitioning into 13C-BVOCs and respiratory 13CO2. Measurements of trace gas emissions of the Mediterranean shrub Halimium halimifolium revealed a broad range of emitted BVOCs. In general, [2-13C]-PYR was rapidly incorporated into emitted acetic acid, methyl acetate, toluene, cresol, trimethylbenzene, ethylphenol, monoterpenes and sesquiterpenes, indicating de novo BVOC biosynthesis of these compounds. In contrast, [1-13C]-pyruvate labelling substantially increased 13CO2 emissions in the light indicating C1-decarboxylation. Similar labelling patterns of methyl acetate and acetic acid suggested tightly connected biosynthetic pathways and, furthermore, there were hints of possible biosynthesis of benzenoids via the MEP-pathway. Overall, substantial CO2 emission from metabolic branching points during de novo BVOC biosynthesis indicated that decarboxylation of [1-13C]-pyruvate, as a non-mitochondrial source of CO2, seems to contribute considerably to daytime CO2 release from leaves. Our approach, combining synchronised BVOC and CO2 measurements in combination with position-specific labelling opens the door for real-time analysis tracing metabolic pathways and carbon turnover under different environmental conditions, which may enhance our understanding of regulatory mechanisms in plant carbon metabolism and BVOC biosynthesis.
Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m−2 s−1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m−2 s−1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m−2 s−1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.
Processes controlling plant carbon allocation among primary and secondary metabolism, i.e., carbon assimilation, respiration, and VOC synthesis are still poorly constrained, particularly regarding their response to stress. To investigate these processes, we simulated a 10-day 38°C heat wave, analysing real-time carbon allocation into primary and secondary metabolism in the Mediterranean shrub Halimium halimifolium L. We traced position-specific 13 C-labeled pyruvate into daytime VOC and CO 2 emissions and during light-dark transition. Net CO 2 assimilation strongly declined under heat, due to threefold higher respiration rates. Interestingly, day respiration also increased twofold. Decarboxylation of the C1-atom of pyruvate was the main process driving daytime CO 2 release, whereas the C2-moiety was not decarboxylated in the TCA cycle. Heat induced high emissions of methanol, methyl acetate, acetaldehyde as well as mono-and sesquiterpenes, particularly during the first two days. After 10-days of heat a substantial proportion of 13 C-labeled pyruvate was allocated into de novo synthesis of VOCs. Thus, during extreme heat waves high respiratory losses and reduced assimilation can shift plants into a negative carbon balance. Still, plants enhanced their investment into de novo VOC synthesis despite associated metabolic CO 2 losses. We conclude that heat stress redirected the proportional flux of key metabolites into pathways of VOC biosynthesis most likely at the expense of reactions of plant primary metabolism, which might highlight their importance for stress protection.
The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.
Summary The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO2, we conducted tracer experiments with 13CO2 and position‐specific 13C‐labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO2 and VOC. Drought reduced the emission of the sesquiterpenes α‐farnesene and β‐farnesene but did not affect 13C‐incorporation from 13C‐pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re‐direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.