We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strongcoupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
In this paper we compute the electroweak corrections to the charged Higgs boson decay into a W boson and a neutral Higgs boson in the CP-conserving NMSSM. We calculate the process in a general R ξ gauge and investigate the dependence of the loop-corrected decay width on the gauge parameter ξ. The gauge dependence arises from the mixing of different loop orders. Phenomenology requires the inclusion of mass and mixing corrections to the external Higgs bosons in order to match the experimentally measured mass values. As a result, we move away from a strict one-loop calculation and consequently mix orders in perturbation theory. Moreover, determination of the loop-corrected masses in an iterative procedure also results in the mixing of different loop orders. Gauge dependence then arises from the mismatch with tree-level Goldstone boson couplings that are applied in the loop calculation, and from the gauge dependence of the loop-corrected masses themselves. We find that the gauge dependence is significant. *
One of the most important mechanisms at the Large Hadron Collider (LHC) for the production of the pseudoscalar Higgs boson of the Minimal Supersymmetric Standard Model (MSSM) is the loop-induced gluon fusion process gg → A. The higher-order QCD corrections have been obtained a long time ago and turned out to be large. However, the genuine supersymmetric (SUSY–)QCD corrections have been obtained only in the limit of large SUSY particle masses so far. We describe our calculation of the next-to-leading-order (NLO) SUSY-QCD results with full mass dependence and present numerical results for a few representative benchmark points. We also address the treatment of the effective top and bottom Yukawa couplings, in the case of heavy SUSY particles, in terms of effective low-energy theories where the heavy degrees of freedom have been decoupled. Furthermore, we include a discussion of the relation between the SUSY-QCD corrections that we have computed and the Adler-Bardeen theorem for the axial anomaly. In addition, we apply our results to the gluonic and photonic pseudoscalar Higgs decays A → gg, γγ at NLO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.