Robotic ankle-foot prostheses aim to improve the mobility of individuals with belowknee amputations by closely imitating the biomechanical function of the missing biological limb. To accomplish this goal, they must provide biomechanically accurate torque during ambulation. In addition, they must satisfy further requirements such as build height, range of motion (ROM), and weight. These requirements are critical for determining the potential number of users, range of activities that can be performed, and clinical outcomes. Previous studies have proposed addressing this challenge through the use of advanced actuation systems with series and parallel elastic actuators, clutchable leverages, and pneumatic artificial muscles. These ad vanced actuation systems have shown improved mechanical and electrical efficiency compared to conventional servo motors, making powered ankle prostheses possible. However, the improved efficiency comes at the expense of a tall build height, reduced ROM, and significant increase in weight, thus limiting the clinical viability of currently available powered prostheses.In this article, we show how a polycentric design can enable a lightweight powered ankle prosthesis to fit within the anatomical foot profile while providing physiological torque, energy, and ROM. Our simulations demonstrate that the moving instantaneous center of rotation (ICR) of the proposed polycentric mechanism has a twofold effect. It improves electrical efficiency by affecting the torque and speed required at the motor output and reduces the load on the main transmission system. Using the proposed powered polycentric design, we developed the first powered ankle-foot prosthesis that fits within the biological ©ISTOCKPHOTO.COM/NADIA_BORMOTOVA
Robotic leg prostheses promise to improve the mobility and quality of life of millions of individuals with lower-limb amputations by imitating the biomechanics of the missing biological leg. Unfortunately, existing powered prostheses are much heavier and bigger and have shorter battery life than conventional passive prostheses, severely limiting their clinical viability and utility in the daily life of amputees. Here, we present a robotic leg prosthesis that replicates the key biomechanical functions of the biological knee, ankle, and toe in the sagittal plane while matching the weight, size, and battery life of conventional microprocessor-controlled prostheses. The powered knee joint uses a unique torque-sensitive mechanism combining the benefits of elastic actuators with that of variable transmissions. A single actuator powers the ankle and toe joints through a compliant, underactuated mechanism. Because the biological toe dissipates energy while the biological ankle injects energy into the gait cycle, this underactuated system regenerates substantial mechanical energy and replicates the key biomechanical functions of the ankle/foot complex during walking. A compact prosthesis frame encloses all mechanical and electrical components for increased robustness and efficiency. Preclinical tests with three individuals with above-knee amputation show that the proposed robotic leg prosthesis allows for common ambulation activities with close to normative kinematics and kinetics. Using an optional passive mode, users can walk on level ground indefinitely without charging the battery, which has not been shown with any other powered or microprocessor-controlled prostheses. A prosthesis with these characteristics has the potential to improve real-world mobility in individuals with above-knee amputation.
After above-knee amputation, the missing biological knee and ankle are commonly replaced with a passive prosthesis, which cannot provide net-positive energy to assist the user. During activities such as sit-to-stand, above-knee amputees must compensate for this lack of power using their upper body, intact limb, and residual limb, resulting in slower, less symmetric, and higher effort movements. Previous studies have shown that powered prostheses can improve symmetry and speed by providing positive assistive power. However, we still lack a systematic investigation of the effect of powered prosthesis assistance. Without this knowledge, researchers and clinicians have no framework for tuning powered prostheses to optimally assist users. Here we show that varying the assistive knee torque significantly affected weight-bearing symmetry, effort, and speed during the stand-up movement in eight above-knee amputees. Specifically, we observed improvements in the index of asymmetry of the vertical ground reaction force at the point approximating maximum vertical center of mass acceleration, the integral of the intact vastus medialis activation measured using electromyography, and the stand-up duration compared to the passive prosthesis. We saw significant improvements in all three metrics when subjects used the powered prosthesis compared to the passive prosthesis. We saw improvements in all three metrics with increasing assistive torque levels commanded by the powered prosthesis. We also observed increased weight-bearing asymmetry at the end of movement, and increased kinematic asymmetry with increasing assistance from the powered prosthesis. These results show that powered prostheses can improve functional mobility, potentially increasing quality of life for millions of people living with above-knee amputations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.