The alloying elements Nb, Ta and Zr improve the creep properties of fully lamellar γ/α2 titanium aluminides significantly. Since high temperature deformation mainly occurs in the γ-phase of γ/α2 titanium aluminides, the diffusivity and the solid solution hardening effect of these three elements in the γ-phase is studied by analyzing the concentration gradients of the alloying elements and the resulting hardness across the interdiffusion zone of diffusion couples by energy dispersive X-ray diffraction and nanoindentation. The results reveal that Zr has the highest interdiffusion coefficient but also the largest solid solution hardening coefficient. The mechanical properties of single γ-phase Ti-54Al-5X alloys were investigated by strain rate jump tests. The addition of 5 at.% Nb or Ta lead to an increased strength compared to a binary γ-Ti-54Al alloy. The Zr-containing γ-TiAl alloy reveals the highest strength at 750 °C and 900 °C, which is discussed to be due to the strong solid solution hardening effect of Zr. However, in comparison to the other alloys, Ti-54Al-5Zr shows quite brittle behavior up to 900 °C. The lower diffusivity of Ta compared to Nb leads to a higher strength of the Ta-modified alloy at 900 °C.
Solid solution strengthening of the unordered γ matrix phase by alloying elements is of great importance during creep of Ni-based superalloys, particularly at high temperatures above 1000 °C. To study the role of different potent solutes, we have conducted creep experiments on binary Ni-2X alloys (X = Mo, Re, Ta, W) at 1000 °C, 1050 °C, and 1100 °C at a constant stress of 20 MPa. Compared to mechanical tests below 800 °C, where the size of the elements mostly determines the solid solution hardening contribution, the strengthening contribution of the different alloying elements above 1000 °C directly correlates with their diffusivity. Therefore, elements such as Ta that lead to strong solid solution hardening at low temperatures become less effective at higher temperatures and are exceeded by slower diffusing elements, such as Re.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.