Al-Sc-Zr alloys are interesting for the production of high strength micro components by micro deep drawing. These alloys show a good hardenability due to the formation of nanometer-scale spheroidal Al3(Sc, Zr) precipitates, which are highly coherent with the aluminum matrix. However, the formation of these precipitates in Al-Sc-Zr foils fabricated by conventional metallurgical methods dramatically reduces their ductility and drawability. In this work, magnetron sputtering was used to produce Al-Sc-Zr foils and Al-Sc-Zr / stainless steel bimetallic foils which are nearly free of these precipitates. Tensile tests were carried out to measure and compare the mechanical properties of monometallic Al-Sc-Zr foils and bimetallic Al-Sc-Zr / stainless steel foils deposited with varying plasma target powers and containing different volume fractions (layer thickness) of Al-Sc-Zr. Micro deep drawing was used to determine the drawability of selected monometallic and bimetallic foils. The results show that the density of monometallic Al-Sc-Zr foils can be improved significantly by increasing the DC target power and by using the high power impulse magnetron sputtering (HiPIMS) technology, resulting in foils with higher ductility. Bimetallic foils achieved higher strength and ductility than monometallic Al-Sc-Zr foils. Their mechanical properties vary with the target power and the volume fraction (thickness) of Al-Sc-Zr. The limit drawing ratio of HiPIMS deposited monometallic foil was 1.7 or 1.8 depending on the side of the foil facing the die, whereas a limit drawing ratio of 1.9 was observed for bimetallic foils.
The projects of this chapter describe micro forming processes that are studied as single processes but can also be combined as process chains. Proven examples are material accumulation and succeeding rotary swaging, or rotary swaging and extrusion.Micro forming differs from macro forming due to scaling effects, which can mean both challenges and benefits. Problems may arise from the handling of fragile parts or adhesive forces between the micro parts or friction effects.Benefits from scaling effects are made use of in the project "Generation of functional parts of a component by laser-based free-form heading". The aim is a material accumulation that is generated from short duration laser melting. This material accumulation gives the basis for succeeding cold forming operations. The first powerful application for the new technology was upsetting. In the macro range, upset ratios of about 2.3 are achievable, but this is reduced in the micro scale due to earlier buckling of the components. In the micro scale, where cohesive forces can exceed the gravitational force, the molten material forms a droplet that remains adhered to the rod. Thus, upset ratios of up to 500 were reached. The process development was accompanied by a mathematical model and allows for a deep insight into the thermodynamics of laser-induced material accumulation in the micro range.The laser molten material accumulation could, for example, be further processed by micro rotary swaging. Though rotary swaging has been known in the macro range for a long time and is nowadays an intensively used process in the automotive industry to produce lightweight components from tubular blanks, there are only a few scientific works that have addressed material characteristics like the work hardening or residual stress that are linked to the process and machine parameters and the resulting material flow. Due to micro scale specifics that follow from the kinematics, i.e. relatively smaller stiffness against part buckling and wider tool gaps in the opened state, the feed rates achievable cannot compete with high throughput technologies that produce 500 parts per minute and more. One major aim of the project "Rotary swaging of micro parts" was to increase the productivity for the main process variants, namely infeed and plunge rotary swaging. This demanded also process modeling to understand how parameter variations like friction between tools and the work in the different zones of the swaging tools affect the process.From the modeling and simulation, separate process variations were deduced and investigated. For infeed swaging, a special workpiece clamping allows for compensation of the pushback force, which results in a 10-fold increase of the maximum feed rate. For plunge rotary swaging, an approach was tested to close the tools gaps during opening using elastic intermediate elements that encapsule the workpiece against the forming dies and enable a 4-fold increase of the radial feed rate. 28 B. Kuhfuss et al.Micro rotary swaging could become a base technology ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.