Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic.
Nanomedicines including lipid-and polymer-based nanoparticles and polymer−drug conjugates enable targeted drug delivery for the treatment of numerous diseases. Quantitative analysis of components in nanomedicines is routinely performed to characterize the products to ensure quality and property consistency but has been mainly focused on the active pharmaceutical ingredients (APIs) in academic publications. It has been increasingly recognized that excipients in nanomedicines are critical in determining the product quality, stability, consistency, and safety. APIs are often analyzed by highperformance liquid chromatography (HPLC), and it would be convenient if the same method can be applied to excipients to robustly quantify all components in nanomedicines. Here, we report the development of a HPLC method that combined an evaporative light scattering (ELS) detector with an UV−vis detector to simultaneously analyze drugs and excipients in nanomedicines. This method was tested on diverse nanodrug delivery systems, including a niosomal nanoparticle encapsulating a phytotherapeutic, a liposome encapsulating an immune boosting agent, and a PEGylated peptide. This method can be utilized for a variety of applications, such as monitoring drug loading, studying drug release, and storage stability. The information obtained from the analyses is of importance for nanomedicine formulation development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.