Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
NLR was found to be an independent prognostic factor for overall survival. The evaluation of NLR can help identify patients with poor prognosis and appears a useful prognostic marker in clinical practice. A prospective analysis is warranted to confirm these findings.
The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality. Several potential confounding variables were found and need to be considered for future studies to evaluate GTV changes during definitive radiotherapy with respect to treatment outcome.
Immune-checkpoint inhibitors (ICI) have dramatically changed the landscape of lung cancer treatment. Preclinical studies investigating combination of ICI with radiation show a synergistic improvement of tumor control probability and have resulted in the development of novel therapeutic strategies. For advanced non-small cell lung cancer (NSCLC), targeting immune checkpoint pathways has proven to be less toxic with more durable treatment response than conventional chemotherapy. In inoperable Stage III NSCLC, consolidation immune checkpoint inhibition with the PD-L1 inhibitor durvalumab after completion of concurrent platinum-based chemoradiotherapy resulted in remarkable improvement of progression-free and overall survival. This new tri-modal therapy has become a new treatment standard. Development of predictive biomarkers and improvement of patient selection and monitoring is the next step in order to identify patients most likely to derive maximal benefit from this new multimodal approach. In this review, we discuss the immunological rationale and current trials investigating chemoradioimmunotherapy for inoperable stage III NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.