We report on solution processed polymer light emitting diodes (PLEDs) using inkjet-printed embedded and non-embedded metal grid anodes. Metal grids were inkjet-printed in a honeycomb layout. Honeycomb dimensions were varied from 3 mm to 8 mm to optimize device performance. Inkjetprinted grids were then coated with a highly conductive PEDOT:PSS formulation. First experiments on PEDOT:PSS coated, non-embedded metal grid anodes showed that grids with a 3 mm honeycomb diameter have a similar efficiency as optimized indium tin oxide (ITO) based reference devices. To further improve the efficiency of the devices, the honeycomb Ag-grids were embedded in an Ormocer V R-based material. A detailed performance analysis of PLEDs fabricated on ITO, nonembedded and embedded grids was carried out. It is shown that reduced leakage current and enhanced light outcoupling by embedding result in a significant efficiency enhancement of 250% in inkjet-printed embedded Ag-PEDOT:PSS ITO-free PLEDs, compared to the ITO-based reference PLEDs.
The present study investigates processing routes to obtain highly conductive and transparent electrodes of silver nanowires (AgNWs) on flexible polyethylene terephthalate (PET) substrate. The AgNWs are embedded into a UV-curable polymer to reduce the electrode roughness and enhance its stability. For the purpose of device integration, the AgNWs must partially protrude from the polymer, which demands that their embedding is followed by a transfer step from a host substrate to the final substrate. Since the AgNWs require some sort of curing (thermal or plasma) to reduce the electrode sheet resistance, a thermally stable host substrate is generally used. This study shows that both thermally stable polyimide, as well as temperature-sensitive PET can be used as flexible host substrates, combined with a gentle, AgNW plasma curing. This is possible by adjusting the fabrication sequence to accommodate the plasma curing step, depending on the host substrate. As a result, embedded AgNW electrodes, transferred from polyimide-to-PET and from PET-to-PET are obtained, with optical transmittance of ∼80% (including the substrate) and sheet resistance of ∼13 Ω/sq., similar to electrodes transferred from glass-to-glass substrates. The embedded AgNW electrodes on PET show superior performance in bending tests, as compared to indium-tin-oxide electrodes. The introduced approach, involving low-cost flexible substrates, AgNW spray-coating and plasma curing, is compatible with high-throughput, roll-to-roll processing.
We report on ITO-free OLEDS with a transparent hybrid Cu nanoparticle grid/PEDOT:PSS electrode processed in ambient conditions. An experimentally based methodology was implemented, where studies on alternative PEDOT:PSS derivatives and Cu grid design were performed, to gradually increase the efficiency of lab scale ITO-free OLEDs. To further increase electrode performance, inkjet-printed (IJP) Cu-grids are embedded to flatten the electrode, reduce leakage current and enhance homogeneity and efficiency. Finally, embedded Cu based ITO-free OLEDs showed current and power efficiencies comparable to reference ITO-based OLEDs. Methods to manufacture large area flat embedded IJP Cu-electrodes on glass and flexible substrates are presented and upscaling prospects of the proposed ITO-free electrode are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.