a b s t r a c tThe computation of selected eigenvalues and eigenvectors of a symmetric (Hermitian) matrix is an important subtask in many contexts, for example in electronic structure calculations. If a significant portion of the eigensystem is required then typically direct eigensolvers are used. The central three steps are: reduce the matrix to tridiagonal form, compute the eigenpairs of the tridiagonal matrix, and transform the eigenvectors back. To better utilize memory hierarchies, the reduction may be effected in two stages: full to banded, and banded to tridiagonal. Then the back transformation of the eigenvectors also involves two stages. For large problems, the eigensystem calculations can be the computational bottleneck, in particular with large numbers of processors. In this paper we discuss variants of the tridiagonal-to-banded back transformation, improving the parallel efficiency for large numbers of processors as well as the per-processor utilization. We also modify the divide-and-conquer algorithm for symmetric tridiagonal matrices such that it can compute a subset of the eigenpairs at reduced cost. The effectiveness of our modifications is demonstrated with numerical experiments.
We analyze the FEAST method for computing selected eigenvalues and eigenvectors of large sparse matrix pencils. After establishing the close connection between FEAST and the well-known Rayleigh-Ritz method, we identify several critical issues that influence convergence and accuracy of the solver: the choice of the starting vector space, the stopping criterion, how the inner linear systems impact the quality of the solution, and the use of FEAST for computing eigenpairs from multiple intervals. We complement the study with numerical examples, and hint at possible improvements to overcome the existing problems.
We consider the FEAST eigensolver, introduced by Polizzi in 2009 [5]. We describe an improvement concerning the reliability of the algorithm and discuss an application in the solution of eigenvalue problems from graphene modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.