The aim of the Object name services (ONS) project was to find a robust and stable way of automated communication to utilize name and directory services to support radio-frequency identification (RFID) ecosystem, mainly in the way that can leverage open source and standardized services and capability to be secured. All this work contributed to the new RFID services and Internet of Things (IoT) heterogeneous environments capabilities presentation. There is an increasing demand of transferred data volumes associated with each and every IP or non-IP discoverable objects. For example RFID tagged objects and sensors, as well as the need to bridge remaining communication compatibility issues between these two independent worlds. RFID and IoT ecosystems require sensitive implementation of security approaches and methods. There are still significant risks associated with their operations due to the content nature. One of the reasons of past failures could be lack of security as the integral part of design of each particular product, which is supposed to build ONS systems. Although we focused mainly on the availability and confidentiality concerns in this paper, there are still some remaining areas to be researched. We tried to identify the hardening impact by metrics evaluating operational status, resiliency, responsiveness and performance of managed ONS solution design. Design of redundant and hardened testing environment under tests brought us the visibility into the assurance of the internal communication security and showed behavior under the load of the components in such complex information service, with respect to an overall quality of the delivered ONS service.
in this paper we describe the main phases of an ideation, hardware design, development, prototyping and testing of UHF RFID high memory capacity TAG supported with two external independent power sources. There were used current best practices to design and build a proof of concept with two energy sources: Solar and Wireless which made the TAG battery free and semi-active. Harvested energy should help to support RFID semi-active tag whenever radio signal or light is available. Based on the parallel experience, existing research of similar projects and requirements there was decided to create our own PCB layout for tag board carrying two modules. First source is Solar panel; second one is a Wireless power receiver at frequency of 915MHz. Concerning the RFID circuit Monza Dura family chip as the main microprocessor for RFID transponder was used and a printed PCB antenna as per vendor specification to allow it to interact with remote RFID transmitter. All the system is printed on a FR4 substrate. The main goal was RFID tag reading distance extension. Than it was prototyped and tested the potential of an external power supply for the specific RFID tag based on globally available, harvesting ready RFID chip. In addition to this goal it was validated how does it influence the reading distance and if there will be a positive impact to amplification for more efficient backscatter effect to be able to improve overall Quality of Service. There is a perspective to continue with development and to add other complementary power sources, optimize their switching and management of tag functionalities as well as to fulfill extensive energy requirements for future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.