Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme-specific differences regarding peroxiredoxin reduction and the overall rate-limiting step under physiological conditions often remain to be deciphered. The 1-Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin-dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stoppedflow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second-order rate constant of 6 Â 10 5 M À1 s À1 at 25 C and thermodynamic activation parameters ΔH ‡ , ΔS ‡ , and ΔG ‡ of 39.8 kJ/mol, À0.8 J/ mol, and 40.0 kJ/mol, respectively. The gain-of-function mutant PfAOP L109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.
So-called 1-Cys peroxiredoxins (Prx) employ only one cysteine residue for the reduction of hydroperoxides and require an external thiol for the reduction of a reactive sulfenic acid during the catalytic cycle. Hence, 1-Cys Prx, which often belong to the structural Prx5-or the Prx6-type subfamily, are potentially promiscuous enzymes that could react with a variety of thiols. Furthermore, the dependence on an external thiol could affect the susceptibility of 1-Cys Prx to hyperoxidation, i.e., the formation of a sulfinic or sulfonic acid. Here, we compared the reaction mechanisms and kinetics of the Prx5-and Prx6-type enzymes PfAOP and PfPrx6 from the malaria parasite Plasmodium falciparum to address the hyperoxidation susceptibility and potential substrate promiscuity of 1-Cys Prx. While PfAOP did not react with common thiol-disulfide oxidoreductases, the enzyme turned out to be promiscuous regarding the reduction by synthesized glutathione analogues and other low-molecular-weight thiols. Furthermore, we established a complete single turnover experiment for PfAOP with glutathione and the glutaredoxin PfGrx and identified the rapid H 2 O 2 -dependent hyperoxidation of PfAOP as the cause for the apparent preference of this Prx5-type enzyme for alkylhydroperoxides in vitro. Unlike promiscuous PfAOP, PfPrx6 was inactive with ascorbate, the physiological low-molecular-weight thiols glutathione, cysteine, cysteamine, coenzyme A, and dihydrolipoamide, as well as physiological protein thiols, including PfTrx1, PfGrx, and the resolving cysteine of the Prx1-type enzyme PfPrx1a in potential hetero-oligomers. Reduction of PfPrx6 was only observed with dithiothreitol and required the presence of a histidine residue, which protects the enzyme from hyperoxidation and is the major structural difference between the active sites of Prx5-and Prx6-type enzymes. We propose two alternative evolutionary adaptations of the 1-Cys Prx mechanism to hyperoxidation and the formation of alternative mixed disulfides that could explain the co-existence of promiscuous Prx5-and protected Prx6-type enzymes in a variety of organisms and subcellular compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.