This paper shows the topology design of a simple second-order oscillator based on two three-port current conveyors, two resistors, and two grounded capacitors, as well as its modification to a voltage-controlled oscillator (VCO). In comparison with many previous works, the following useful conceptual novelties and improvements were made in this study. Both resistors presented in the topology can be employed to tune of the oscillation frequency by the simultaneous driving of two optocouplers with resistive output stage. The current gain of the current conveyor ensures the control of the oscillation condition. The proposed solution offers advantages (in comparison with many standard so-called single-resistance-controllable types) of improved dependence of the frequency of oscillation (FO) on a driving force (extended tuning of the FO), constant ratio of amplitudes of generated waveforms when the FO is tuned, low complexity (taking into account auxiliary circuitry for optocouplers), and comfortable tuning of the FO by a single control voltage. The oscillator produces waveforms with tunable frequency having a constant 45-degree phase shift between them. The relative sensitivities of the proposed solution achieve typical values for these second-order systems (−0.5). Experimental verification confirmed the expected behavior in the operational band between 1 and 10 MHz tuned by a DC voltage from 1.7 to 5 V. This indicates a significant reduction of the driving force ratio (3:1 in our case) in comparison with standard tuning approaches required for a ratio of 10:1 for FO adjustment. Output amplitudes reached 100 and 150 mV in the observed tunability range with distortion ranging between 0.7 and 3.3%.
This paper proposes two circuits of frequency-controlled oscillators, whose structures are based only on simple commercially available active elements with minimum number of terminals, in particular, the differential voltage buffer, controllable B Roman Sotner Circuits Syst Signal Process voltage amplifier and electronically controllable current conveyor. Two methods for achieving linear control (tuning) of frequency of oscillations (FO) are discussed. The first method employs a simple structure. However, the generated signal level (amplitude) depends on the tuning process. This is a drawback of this method. The second method solves this drawback completely, and the generated signals have constant amplitudes during the tuning of FO. The expected behavior is confirmed by laboratory experiments utilizing commercially available high-speed active elements (current-and voltage-mode multipliers, video difference amplifier). Operational range was tested from frequencies of hundreds of kHz up to frequencies of tens of MHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.