We report on measurements of structural, superconducting, and magnetic properties of trilayer and bilayer systems combined of superconducting Pb and ferromagnetic Fe. The Pb/Fe layers can be grown on Al 2 O 3 with reasonably flat interfaces, there is no alloying of the components at the interface and Fe is found to be ferromagnetic down to the monolayer range. This is a favorable situation for an S/F proximity system, since it corresponds closely to the situation treated in theoretical models. We find an oscillation of the superconducting transition temperature when plotted versus the thickness of the ferromagnetic layer, which we regard as a clear indication of an unconventional, propagating superconducting pair wave function in the Pb/Fe system. We fit our results using recent theoretical model calculations and find evidence for a strongly reduced transparency of the Pb/Fe interface. We regard this as an essential feature of the proximity effect in Pb/Fe and discuss its physical origin.
We study the superconducting properties of a series of Fe/V/Fe trilayers with variable thickness of the Fe layer and constant thickness of the V layer. For an optimized combination of thicknesses and structural quality of the thin films we observe a re-entrant behavior of the superconducting state when plotting the superconducting transition temperature T c as a function of the Fe thickness d Fe . With increasing d Fe , T c drops sharply up to d Fe Ӎ8 Å, then the superconductivity disappears, and it restores again at d Fe у12 Å.
The aim of the presented work was to develop a method, which would make possible to identify spectral lines in complicated optical emission spectra. This is an important task for many optical diagnostic methods. It was found out, that the most useful technique combines a manual identification of the lines by the user, according to the developed database of atomic and molecular lines, and an enhanced support of the user by various assistant mechanisms.Therefore, in this work a software for displaying, identification and analysis of the optical emission spectra was developed. Besides the identification, program enables a basic handling of the spectra, corrections of the wavelengths and intensities of the spectra and calculations of some plasma parameters (e. g. calculation of rotational, vibrational and electron temperatures) or other important quantities (e. g. calculation of integrated intensity).The developed software was applied to the study of low pressure RF discharge in neon.PACS : 52.70.Kz
Abstract:There are many different techniques for the synthesis of carbon nanotubes (CNTs), and plasma technologies experience a significant competitor in thermal chemical vapor deposition (CVD) processes. A particular process is, therefore, selected according to the specific requirements of an application, which clearly differ for the development of composites as compared to nanoelectronics, field emission, displays, sensors, and the like. This paper discusses the method for the synthesis of CNTs using an atmospheric-pressure microwave (MW) torch. It was successfully applied in the fast deposition of multiwalled nanotubes (MWNTs) on a substrate without the necessity of any vacuum or heating equipment. Dense straight-standing nanotubes were prepared on Si substrates with and also without barrier SiO x layer. Therefore, it was possible to produce CNTs directly on conductive Si and to use them as an electron-emitting electrode of the gas pressure sensor. The CNTs grown in MW torch were also used to create a gas sensor based on the changes of electrical resistance measured between two planar electrodes connected by the CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.