We investigate a class of growing graphs embedded into the d-dimensional torus where new vertices arrive according to a Poisson process in time, are randomly placed in space and connect to existing vertices with a probability depending on time, their spatial distance and their relative ages. This simple model for a scale-free network is called the age-based spatial preferential attachment network and is based on the idea of preferential attachment with spatially induced clustering. We show that the graphs converge weakly locally to a variant of the random connection model, which we call the age-dependent random connection model. This is a natural infinite graph on a Poisson point process where points are marked by a uniformly distributed age and connected with a probability depending on their spatial distance and both ages. We use the limiting structure to investigate asymptotic degree distribution, clustering coefficients and typical edge lengths in the age-based spatial preferential attachment network.MSc classification (2010): Primary 05C80 Secondary 60K35.
We investigate spatial random graphs defined on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and long-range effects. Every Poisson point is assigned an independent weight. Given the weight and position of the points, we form an edge between any pair of points independently with a probability depending on the two weights of the points and their distance. Preference is given to short edges and connections to vertices with large weights. We characterize the parameter regime where there is a non-trivial percolation phase transition and show that it depends not only on the power-law exponent of the degree distribution but also on a geometric model parameter. We apply this result to characterize robustness of age-based spatial preferential attachment networks.
We investigate spatial random graphs defined on the points of a Poisson process in d-dimensional space, which combine scale-free degree distributions and longrange effects. Every Poisson point is assigned an independent weight. Given the weight and position of the points, we form an edge between any pair of points independently with a probability depending on the two weights of the points and their distance. Preference is given to short edges and connections to vertices with large weights. We characterize the parameter regime where there is a nontrivial percolation phase transition and show that it depends not only on the power-law exponent of the degree distribution but also on a geometric model parameter. We apply this result to characterize robustness of age-based spatial preferential attachment networks.
We consider a large class of inhomogeneous spatial random graphs on the real line. Each vertex carries an i.i.d. weight and edges are drawn such that short edges and edges to vertices with large weights are preferred. This allows the study of models with longrange effects and heavy-tailed degree distributions. We introduce a new coefficient, δ eff , measuring the influence of the degree-distribution on the long-range edges. We identify a sharp phase transition in δ eff for the existence of a supercritical percolation phase. In [14] it is shown that the soft Boolean model and the age-dependent random connection model are examples for models that have parameter regimes where there is no subcritical percolation phase. This paper completes these results and shows that in dimension one there exist parameter regimes in which the models have no supercritical phase and regimes with both super-and a subcritical phases.
We consider the preferential attachment model with location-based choice introduced by Haslegrave et al. (Random Struct Algorithms 56(3):775–795, 2020) as a model in which condensation phenomena can occur. In this model, each vertex carries an independent and uniformly distributed location. Starting from an initial tree, the model evolves in discrete time. At every time step, a new vertex is added to the tree by selecting r candidate vertices from the graph with replacement according to a sampling probability proportional to these vertices’ degrees. The new vertex then connects to one of the candidates according to a given probability associated to the ranking of their locations. In this paper, we introduce a function that describes the phase transition when condensation can occur. Considering the noncondensation phase, we use stochastic approximation methods to investigate bounds for the (asymptotic) proportion of vertices inside a given interval of a given maximum degree. We use these bounds to observe a power law for the asymptotic degree distribution described by the aforementioned function. Hence, this function fully characterises the properties we are interested in. The power law exponent takes the critical value one at the phase transition between the condensation–noncondensation phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.