Abstract. Accurate and robust positioning of vehicles in urban environments is of high importance for many applications (e.g. autonomous driving or mobile mapping). In the case of mobile mapping systems, a simultaneous mapping of the environment using laser scanning and an accurate positioning using GNSS is targeted. This requirement is often not guaranteed in shadowed cities where GNSS signals are usually disturbed, weak or even unavailable. Both, the generated point clouds and the derived trajectory are consequently imprecise. We propose a novel approach which incorporates prior knowledge, i.e. 3D building model of the environment, and improves the point cloud and the trajectory. The key idea is to benefit from the complementarity of both GNSS and 3D building models. The point cloud is matched to the city model using a point-to-plane ICP. An informed sampling of appropriate matching points is enabled by a pre-classification step. Support vector machines (SVMs) are used to discriminate between facade and remaining points. Local inconsistencies are tackled by a segment-wise partitioning of the point cloud where an interpolation guarantees a seamless transition between the segments. The full processing chain is implemented from the detection of facades in the point clouds, the matching between them and the building models and the update of the trajectory estimate. The general applicability of the implemented method is demonstrated on an inner city data set recorded with a mobile mapping system.
Accurate and robust positioning of vehicles in urban environments is of high importance for autonomous driving or mobile mapping. In mobile mapping systems, a simultaneous mapping of the environment using laser scanning and an accurate positioning using global navigation satellite systems are targeted. This requirement is often not guaranteed in shadowed cities where global navigation satellite system signals are usually disturbed, weak or even unavailable. We propose a novel approach which incorporates prior knowledge (i.e., a 3D city model of the environment) and improves the trajectory. The recorded point cloud is matched with the semantic city model using a point‐to‐plane iterative closest point method. A pre‐classification step enables an informed sampling of appropriate matching points. Random forest is used as classifier to discriminate between facade and remaining points. Local inconsistencies are tackled by a segmentwise partitioning of the point cloud where an interpolation guarantees a seamless transition between the segments. The general applicability of the method implemented is demonstrated on an inner‐city data set recorded with a mobile mapping system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.