The localization dynamics of excitons in organic semiconductors influence the efficiency of charge transfer and separation in these materials. Here we apply time-resolved X-ray absorption spectroscopy to track photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The π→π* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe X-ray spectroscopic signatures of the initially hot excitonic state, indicating that it is delocalized over multiple polymer chains. This undergoes a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form either a localized exciton or polaron pair.
We report the first demonstration of time-resolved X-ray absorption spectroscopy to track previously undetected photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The pi to pi* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe direct spectroscopic signatures of the initially hot excitonic state, which is delocalized over multiple polymer chains, undergoing a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form the lowest excitonic state on a single polymer chain. This sensitivity of time-resolved X-ray spectroscopy to the primary electron dynamics occurring directly after excitation paves the way for new insights in a wide range of organic optoelectronic materials.
We report the first demonstration of time-resolved X-ray absorption spectroscopy to track previously undetected photoinduced dynamics of a paradigmatic crystalline conjugated polymer: poly(3-hexylthiophene) (P3HT) commonly used in solar cell devices. The pi to pi* transition, the first step of solar energy conversion, is pumped with a 15 fs optical pulse and the dynamics are probed by an attosecond soft X-ray pulse at the carbon K-edge. We observe direct spectroscopic signatures of the initially hot excitonic state, which is delocalized over multiple polymer chains, undergoing a rapid evolution on a sub 50 fs timescale which can be directly associated with cooling and localization to form the lowest excitonic state on a single polymer chain. This sensitivity of time-resolved X-ray spectroscopy to the primary electron dynamics occurring directly after excitation paves the way for new insights in a wide range of organic optoelectronic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.