Wire- and arc-based additive manufacturing (WAAM) is a promising technology for large-scale additive manufacturing of metallic components. However, due to the high heat input by the electric arc, interpass cooling time decelerates the average manufacturing speed. Since future applications aim to the production of large structural steel components, the manufacturing speed is a key parameter to make WAAM usable for civil engineering. Within the scope of this paper, different process cooling strategies are weighed up against one another with regard to efficiency, impact on the process, as well as to the influence on the microstructure of the processed steel. For the thermal evaluation, welds on vertically placed plates were performed using the gas metal arc (GMA) process. As far as different cooling methods are concerned, the standard GMA process is carried out with water bath cooling, high-pressure air cooling and also with aerosol cooling. Temperature curves were determined using thermocouples which are dipped into the molten pool. The evaluation of the microstructure and the hardness is carried out by means of cross sections and Vickers hardness tests. The results show that aerosol cooling can be a promising addition to WAAM as it can be applied during welding and is capable to modify the t8/5 time and, therefore, the mechanical properties of the steel.
Wire and arc additive manufacturing (WAAM) is one of the most promising technologies for large-scale 3D printing of metal parts. Besides the high deposition rates, one of the advantages of WAAM is the possibility of using in situ alloying to modify the chemical composition and therefore the material properties of the fabricated workpiece. This can be achieved by feeding multiple wires of different chemical compositions into the molten pool of the welding process and generating a new alloy during the manufacturing process itself. At present, the chemical composition is changed stepwise by keeping the wire feed speeds per layer constant. This article describes the possibilities of generating chemically graded structures by constantly alternating the wire feed speeds of a multiwire WAAM process. This enables the chemical composition to be smoothly changed during the printing process, and generating structures with highly complex material properties. Several material combinations for different possible applications were successfully tested. Furthermore, grading strategies to avoid negative influences of low-ductility intermetallic phases were examined. The results show that low-ductility phases may even have a beneficial influence on the fracture behavior if they are combined with ductile phases. Moreover, prospective possible applications are discussed.
The level of residual stresses is of great importance for many applications. In this work, the two established residual stress analysis methods x-ray stress analysis and incremental hole-drilling combined with electronic speckle pattern interferometry are compared. Each stress analysis method has its specific limitations. Furthermore, the residual stress state of a material is influenced by its processing history. To compare both methods, aluminum-based specimens (AlCu6Mn, AlZn5.5MgCu) with different processing histories were investigated. Measurements with both methods were conducted on the same specimens and on the same measurement spots. Highest stress levels were found in the mechanically machined specimen, while heat treatment via tempering or deposition welding shows reduced stress levels inside of the specimens. In case of cold spraying, the stresses in the feedstock material are considered negligible. In contrast, cold-spray coatings deposited on construction steel substrate exhibited tensile stresses, which relax over time at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.