Increasing the metal‐to‐ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo‐ and heteroleptic complexes [Fe(cpmp)2]2+ (12+) and [Fe(cpmp)(ddpd)]2+ (22+) with the tridentate ligands 6,2’’‐carboxypyridyl‐2,2’‐methylamine‐pyridyl‐pyridine (cpmp) and N,N’‐dimethyl‐N,N’‐di‐pyridin‐2‐ylpyridine‐2,6‐diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal‐ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six‐membered chelate rings. The push‐pull ligand cpmp provides intra‐ligand and ligand‐to‐ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X‐ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X‐ray emission spectroscopy, static and time‐resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.
Nanozeolites are of great interest with the premise of their efficiency in traditional applications such as catalysis and separation, as well as their emerging applications including chemical sensors, medicine, and food industry. We report a new geopolymerization route for the synthesis of nanozeolites with different crystal structures by exploring the Na−Al−Si−H 2 O quaternary phase space under a mild hydrothermal condition. Nanostructured faujasite (FAU), cancrinite (CAN), and sodalite (SOD) zeolites with a crystallite size smaller than 40 nm were successfully produced from our exploration, as well as a submicron-sized Linde-Type A (LTA) zeolite. The transmission electron microscopy and nitrogen sorption analysis on representative zeolite samples showed that FAU and SOD zeolites exhibit textural mesopores, while CAN products have a more open aggregate structure. Our findings establish the geopolymerization as a convenient route for production of low-silica nanozeolites.
We report the synthesis and characterization of hydroxycancrinite zeolite nanorods by a simple hydrothermal treatment of aluminosilicate hydrogels at high concentrations of precursors without the use of structure-directing agents. Transmission electron microscopy (TEM) analysis reveals that cancrinite nanorods, with lengths of 200-800 nm and diameters of 30-50 nm, exhibit a hexagonal morphology and are elongated along the crystallographic c direction. The powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) and TEM studies revealed sequential events of hydrogel formation, the formation of aggregated sodalite nuclei, the conversion of sodalite to cancrinite and finally the growth of cancrinite nanorods into discrete particles. The aqueous dispersion of the discrete nanorods displays a good stability between pH 6-12 with the zeta potential no greater than -30 mV. The synthesis is unique in that the initial aggregated nanocrystals do not grow into microsized particles (aggregative growth) but into discrete nanorods. Our findings demonstrate an unconventional possibility that discrete zeolite nanocrystals could be produced from a concentrated hydrogel.
Bis[1]benzothieno[1,4]thiazines (BBTT) are particularly electron-rich S,N-heteropentacenes and their radical cations and dications can be relevant intermediates in charge transport materials. All three regioisomers of N-p-fluorophenyl-BBTT (syn-syn, syn-anti, and anti-anti) were...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.