Bioremediation systems represent an environmentally sustainable approach to degrading industrially generated thiocyanate (SCN−), with low energy demand and operational costs and high efficiency and substrate specificity. However, heavy metals present in mine tailings effluent may hamper process efficiency by poisoning thiocyanate-degrading microbial consortia. Here, we experimentally tested the tolerance of an autotrophic SCN−-degrading bacterial consortium enriched from gold mine tailings for Zn, Cu, Ni, Cr, and As. All of the selected metals inhibited SCN− biodegradation to different extents, depending on concentration. At pH of 7.8 and 30 °C, complete inhibition of SCN− biodegradation by Zn, Cu, Ni, and Cr occurred at 20, 5, 10, and 6 mg L−1, respectively. Lower concentrations of these metals decreased the rate of SCN− biodegradation, with relatively long lag times. Interestingly, the microbial consortium tolerated As even at 500 mg L−1, although both the rate and extent of SCN− biodegradation were affected. Potentially, the observed As tolerance could be explained by the origin of our microbial consortium in tailings derived from As-enriched gold ore (arsenopyrite). This study highlights the importance of considering metal co-contamination in bioreactor design and operation for SCN− bioremediation at mine sites. Key points • Both the efficiency and rate of SCN−biodegradation were inhibited by heavy metals, to different degrees depending on type and concentration of metal. • The autotrophic microbial consortium was capable of tolerating high concentrations of As, potential having adapted to higher As levels derived from the tailings source.
Bioremediation systems represent an environmentally sustainable approach to degrading industrially-generated thiocyanate (SCN-), with low energy demand and operational costs, and high efficiency and substrate specificity. However, heavy metals present in mine tailings effluent may hamper process efficiency by poisoning thiocyanate-degrading microbial consortia. Here we experimentally tested the tolerance of an autotrophic SCN--degrading bacterial consortium enriched from gold mine tailings for Zn, Cu, Ni, Cr, and As. All of the selected metals inhibited SCN- biodegradation to different extents, depending on concentration. At pH of 7.8 and 30°C, complete inhibition of SCN- biodegradation by Zn, Cu, Ni, and Cr occurred at 20, 5, 10, and 6 mg L-1, respectively. Lower concentrations of these metals decreased the rate of SCN- biodegradation, with relatively long lag times. Interestingly, the microbial consortium tolerated As even at 500 mg L-1, although both the rate and extent of SCN- biodegradation were affected. This study highlights the importance of considering metal co-contamination in bioreactor design and operation for SCN- bioremediation at mine sites.Key pointsBoth the efficiency and rate of SCN- biodegradation were inhibited by heavy metals, to different degrees depending on type and concentration of metalThe autotrophic microbial consortium was capable of tolerating high levels of As
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.