Compact and entirely soft optics with tunable and adaptive properties drive the development of life‐like soft robotic systems. Yet, existing approaches are either slow, require rigid components, or use high operating voltages of several kilovolts. Here, soft focus‐tunable lenses are introduced, which operate at practical voltages, cover a high range of adjustable focal lengths, and feature response times in the milliseconds range. The nature‐inspired design comprises a liquid‐filled elastomeric lens membrane, which is inflated by zipping electroactive polymers to tune the focal length. An analytic description of the tunable lens supports optimized designs and accurate prediction of the lens characteristics. Focal length changes between 22 and 550 mm (numerical aperture 0.14–0.005) within 260 ms, equal in performance to human eyes, are demonstrated for a lens with 3 mm aperture radius, while applying voltages below 500 V. The presented model, design rules, and fabrication methods address central challenges of soft electrostatic actuators and optical systems, and pave the way toward autonomous bio‐inspired robots and machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.