RNA molecules face difficulties when folding into their native structures. In the cell, proteins can assist RNAs in reaching their functionally active states by binding and stabilizing a specific structure or, in a quite opposite way, by interacting in a non-specific manner. These proteins can either facilitate RNA-RNA interactions in a reaction termed RNA annealing, or they can resolve non-functional inhibitory structures. The latter is defined as "RNA chaperone activity" and is the main topic of this review. Here we define RNA chaperone activity in a stringent way and we review those proteins for which RNA chaperone activity has been clearly demonstrated. These proteins belong to quite diverse families such as hnRNPs, histone-like proteins, ribosomal proteins, cold shock domain proteins and viral nucleocapsid proteins. DExD/H-box containing RNA helicases are discussed as a special family of enzymes that restructure RNA or RNPs in an ATP-dependent manner. We further address the different mechanisms RNA chaperones might use to promote folding including the recently proposed theory of protein disorder as a key element in triggering RNA-protein interactions. Finally, we present a new website for proteins with RNA chaperone activity which compiles all the information on these proteins with the perspective to promote the understanding of their activity.
SummaryThe eukaryotic 40S ribosomal subunit locates the translation initiation codon on an mRNA via the socalled scanning process that follows 40S binding to the capped 5 ¢ ¢ ¢ ¢ end. This key step in translation is required for the expression of almost all eukaryotic genes, yet the mechanism and dynamics of scanning are unknown. We have performed quantitative studies in vivo and in vitro of the movement of yeast 40S ribosomes along 5 ¢ ¢ ¢ ¢ untranslated regions (UTRs) of different lengths. 40S subunits perform cap-dependent scanning with high processivity for more than 1700 nucleotides in cells of Saccharomyces cerevisiae . Moreover, the observed rates of expression indicate that scanning is performed by an untethered 40S subunit that has been released from the 5 ¢ ¢ ¢ ¢ cap complex. Unexpectedly, the capability to maintain scanning competence on a long 5 ¢ ¢ ¢ ¢ UTR is more dependent on the Ded1/Dbp1 type of helicase than on eIF4A or eIF4B. In a yeast cell-free extract, scanning shows reduced processivity, with an estimated net 5 ¢ ¢ ¢ ¢AE AE AE AE 3 ¢ ¢ ¢ ¢ rate of approximately 10 nucleotides per second at 26 ∞ ∞ ∞ ∞ C. We have developed a biased bidirectional walking model of ribosomal scanning that provides a framework for understanding the above observations as well as other known quantitative and qualitative features of this process.
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.
Many RNA-binding proteins help RNAs to fold via their RNA chaperone activity. This term has been used widely without accounting for the diversity of the observed reactions, which include complex events like restructuring of misfolded catalytic RNAs, promoting the assembly of RNA-protein complexes, and mediating RNA-RNA interactions. Proteins display very diverse activities depending on the assays used to measure RNA chaperone activity. To classify proteins with this activity, we compared three exemplary proteins from E. coli, host factor Hfq, ribosomal protein S1, and the histone-like protein StpA for their abilities to promote two simple reactions, RNA annealing and strand displacement. The results of a FRET-based assay show that S1 promotes only RNA strand displacement while Hfq solely enhances RNA annealing. StpA, in contrast, is active in both reactions. To test whether the two activities can be assigned to different domains of the bipartite-structured StpA, we assayed the purified N-and C-terminal domains separately. While both domains are unable to promote RNA annealing, we can attribute the RNA strand displacement activity of StpA to the C-terminal domain. Correlating with their RNA annealing activities, only Hfq and full-length StpA display simultaneous binding of two RNAs, suggesting a matchmaker-like model for this activity. For StpA, this ''RNA crowding'' requires protein-protein interactions, since a dimerization-deficient StpA mutant lost the ability to bind and anneal two RNAs. These results underline the difference between the two reaction types, making it necessary to distinguish and classify proteins according to their specific RNA chaperone activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.