This chapter begins with a description of eye anatomy followed by the anatomy of retinas as well as the acquisition methods for obtaining retinal images. Our own device for capturing the vascular pattern of the retina is introduced in the following text. This chapter presents our aim to estimate the information present in human retina images. The next section describes the search for diseases found in retinal images, and the last section is devoted to our method for generating synthetic retinal images.
Recognition of people on the basis of biometric characteristics has been known for many centuries. One of the most used biometric features is fingerprint. Recently, we have also come across the iris pattern more often. Retinal recognition offers similarly reliable mechanisms, but they are not yet well explored. Our procedure for obtaining a biometric pattern is partly based on fingerprints. In comparison with fingerprints, retinal recognition identifies bifurcations or optical crossings, i.e., instead of papillary lines, the vessels are used. The procedure is more complicated due to the multiple layers in which the blood vessels intersect. Our work deals with determining the probabilities for various areas of the retina in which bifurcation and crossing occur. It also describes how recognition can be affected by various diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.