Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. “Normal” termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation.
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing.
Cells possess mechanisms to prevent synthesis of potentially deleterious truncated proteins caused by premature translation-termination codons (PTCs). Here, we show that PTCs can induce silencing of transcription of its cognate gene. We demonstrate for immunoglobulin (Ig)-mu minigenes expressed in HeLa cells that this transcriptional silencing is PTC specific and reversible by treatment of the cells with histone deacetylase inhibitors. Furthermore, PTC-containing Ig-mu minigenes are significantly more associated with K9-methylated histone H3 and less associated with acetylated H3 than the PTC-free Ig-mu minigene. This nonsense-mediated transcriptional gene silencing (NMTGS) is also observed with an Ig-gamma minigene, but not with several classic NMD reporter genes, suggesting that NMTGS might be specific for Ig genes. NMTGS represents a nonsense surveillance mechanism by which truncation of a gene's open reading frame (ORF) induces transcriptional silencing through chromatin remodeling. Remarkably, NMTGS is inhibited by overexpression of the putative siRNase 3'hExo, suggesting that siRNA-like molecules are involved in NMTGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.