The kinetics and product distribution during the cracking of heptane in the presence of steam were investigated. The experiments were performed in a flow reactor under atmospheric pressure in a temperature range of 680–760°C with a mass ratio of steam to heptane of 3: 1. The overall decomposition of heptane is represented by a first-order reaction with activation energy of 249.1 kJ mol−1 and a frequency factor of 3.13 × 1013 s−1. The reaction products were analysed using gas chromatography, the main product being ethylene. The molecular reaction scheme, which consists of a primary reaction and 24 secondary reactions between primary products, was used for modelling the experimental product yields. The yields of ethylene and hydrogen were in good agreement; however the experimental yields of propylene were higher than the predicted yields.
The present work deals with thermo-catalytic decomposition of pyrolytic oil from the scrap tire pyrolysis process. Such oil can be used as a model tar in an experimental study of tar removal from pyrolysis or gasification process gas. Several experiments under different conditions were carried out in order to determine conditions of the gasification and pyrolysis processes. Influence of the oil to steam ratio, temperature, and of the presence of dolomite catalyst was studied. Addition of water steam has positive effect on the hydrogen content in the outgoing process gas as well as on the conversion of the injected oil. The catalytic gasification experiment in a quasi steady state produced process gas with the composition: 61 mole % of H2, 6.4 mole % of CO, and 11.7 mole % of CH4. At temperatures lower than 800°C, the amount of process gas decreased resulting also in a decrease of the oil conversion. A comparison of gasification experiments using fresh calcined dolomite with experiments proceeding with regenerated dolomite was done under the same conditions. There was a decrease in the process gas volumetric flow when regenerated catalyst was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.