The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination, analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, we tested a macroscopic dimensioned near-infrared (NIR) process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/ soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 μm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber-optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils, and real-world samples, e.g., fermenter residue, suggests a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pretreatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method.
Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. Graphical abstract Electronic supplementary material The online version of this article (10.1007/s00216-019-01752-y) contains supplementary material, which is available to authorized users.
Hyperspectral imaging of environmental samples with infrared microscopes is one of the preferred methods to find and characterize microplastics.
Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. Keywords Online NMR spectroscopy . Real-time process monitoring . Artificial neural networks . Automation . Process industry Abbreviations A hf Measured high-field NMR areas (reference) A hf,test Measured high-field NMR areas (reference) of test dataset A hf,val Measured high-field NMR areas (reference) of validation dataset A lf,ANN Predicted areas of ANN model A lf,ANN,val Predicted areas of ANN model for validation dataset (S lf,val ) A lf,IHM Predicted areas of IHM A lf,synth Areas of pure components of synthetic mixture spectra k Index for component model K Total number of pure component models NN i/ii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.