In October 2000, joint sealants containing polychlorinated biphenyls (PCB) were discovered in various public buildings in Switzerland. Triggered by this event, a nationwide comprehensive study was initiated by the Swiss Agency for the Environment, Forests, and Landscape, and 1348 samples of joint sealants as well as 160 indoor air samples from concrete buildings erected between 1950 and 1980 were analyzed. Out of 1348 samples, 646 (48%) contained PCB. In 279 (21%) samples, PCB concentrations of 10 g/kg and more were detected, and concentrations of 100 g/kg of PCB or more were found in 129 (9.6%) samples. These data indicate that PCB were widely used as plasticizers in joint sealants in Switzerland. In buildings constructed between 1966 and 1971, one-third of all joint sealants investigated contained more than 10 g/kg of PCB. PCB concentrations exceeding the limit of 0.050 g/kg above which material is required to be treated as PCB bulk product waste were reached by 568 samples (42%). PCB with a chlorine content between 45 and 55%, corresponding to mixtures such as Clophen A50, Aroclor 1248, and Aroclor 1254, were encountered in 316 samples (70%). In 42 cases (26%) where joint sealants containing PCB were present, clearly elevated PCB indoor air concentrations above 1 microg/m3 were encountered. In eight cases (5%), levels were higher than 3 microg/m3. The Swiss tentative guideline value of 6 microg/m3 (based on a daily exposure of 8 h) for PCB in indoor air was exceeded in one case (0.6%). On the basis of this work, representing the first large-scale nationwide analysis of the issue of PCB-contaminated joint sealants, we estimate that there are still 50-150 t of PCB present in these materials, acting as diffuse sources. They are distributed over many hundreds of buildings all over the country and represent a significant but frequently overlooked inventory of PCB. In light of the Stockholm Convention on persistent organic pollutants that entered into force last year, reduction of the release of PCB from these widely used materials is an important issue to be addressed.
Polychlorinated biphenyls (PCBs) are persistent organic compounds that are ubiquitously found in the environment. Their use and manufacture were restricted or banned in many countries in the 1970–1980s, however, they still persist in the antroposphere, the environment and in biota worldwide today. Conventions like the Convention on Long-range Transboundary Air Pollution encourage or bind the member parties to annually submit emission inventories of regulated air pollutants. Unfortunately, several member states have not yet reported PCB emissions. The identification and quantification of stocks and emissions sources is, however, an important precondition to handle and remove the remaining reservoirs of PCBs and, thus, to be able to reduce emissions and subsequently environmental exposure. Here, we estimate past, present, and future emissions of PCBs to air in Switzerland and provide emission factors for all relevant emission categories. Switzerland hereby represents a typical developed industrial country, and most of the assumptions and parameters presented here can be used to calculate PCB emission also for other countries. PCB emissions to air are calculated using a dynamic mass flow and emissions model for Switzerland, which is run for the years 1930–2100. The results point out the importance of the use of PCBs in open applications, which have largely been previously overlooked. Additionally, we show that PCBs will persist in applications during the coming decades with ongoing emissions. Especially the use of PCBs in open applications will cause Swiss emissions to remain above 100 kg PCB per year, even after the year 2030. Our developed model is available in Excel/VBA and can be downloaded with this article.
Architectural Knowledge Management (AKM) has been a major topic in software architecture research since 2004. Open AKM problems include an effective, seamless transition from reusable knowledge found in patterns books and technology blogs to project-specific decision guidance and an efficient, practical approach to knowledge application and maintenance. We extended our previous work with concepts for problem space modeling, focusing on reusable knowledge, as well as solution space management, focusing on project-level decisions. We implemented these concepts in ADMentor, an extension of Sparx Enterprise Architect. ADMentor features rapid problem space modeling, UML model linkage, question-option-criteria diagram support, meta-information for model tailoring, as well as decision backlog management. We validated ADMentor by modeling and applying 85 cloud application design decisions and 75 workflow management decisions, creating one problem and three sample solution spaces covering control system architectures, and obtaining user feedback on tool and model content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.