We study how the approach grounded on non-extensive statistical physics can be applied to describe and distinguish different stages of the stock and money market development. A particular attention is given to asymmetric behavior of fat tailed distributions of positive and negative returns. A new method to measure this asymmetry is proposed. It is based on the value of the non-extensive Tsallis parameter q. The new quantifier of the relative asymmetry level between tails in terms of the Tsallis parameters q± is provided to analyze the effect of memory in data caused by nonlinear autocorrelations. The presented analysis takes into account data of separate stocks from the main developing stock market in Europe, i.e., the Warsaw Stock Exchange (WSE) in Poland and—for comparison—data from the most mature money market (Forex). It is argued that the proposed new quantifier is able to describe the stage of market development and its robustness to speculation. The main strength is put on a description and interpretation of the asymmetry between statistical properties of positive and negative returns for various stocks and for diversified time-lags Δt of data counting. The particular caution in this context is addressed to the difference between intraday and interday returns. Our search is extended to study memory effects and their dependence on the quotation frequency for similar large companies—owners of food-industrial retail supermarkets acting on both Polish and European markets (Eurocash, Jeronimo-Martins, Carrefour, Tesco)—but traded on various European stock markets of diversified economical maturity (respectively in Warsaw, Lisbon, Paris and London). The latter analysis seems to indicate quantitatively that stocks from the same economic sector traded on different markets within European Union (EU) may be a target of diversified level of speculations involved in trading independently on the true economic situation of the company. Our work thus gives indications that the statement:” where you are is more important than who you are” is true on trading markets.
We use methods of non-extensive statistical physics to describe quantitatively the memory effect involved in returns of companies from WIG 30 index on the Warsaw Stock Exchange. The entropic approach based on the generalization of the Boltzmann-Gibbs entropy to non-additive Tsallis q-entropy is applied to fit fat tailed distribution of returns to q-normal (Tsallis) distribution. The existence of long term memory effects in price returns generated by two-point autocorrelations are checked via calculation of the Hurst exponent within detrended fluctuation analysis approach. The results are collected for diversified frequency of data sampling. We confirm the perfect inverse cubic power law for low time-lags (≈1 min) of returns for the main WIG 30 index as well as for the most of separate stocks, however this relationship does not hold for longer time-lags. The particular emphasis is given to a study of an independent fit of probability distribution of positive and negative returns to qnormal distribution. We discuss in this context the asymmetry between tails in terms of the Tsallis parameters q ± . A qualitative and quantitative relationship between the frequency of data sampling, the parameters q and q ± , and the corresponding main Hurst exponent H is provided to analyze the effect of memory in data caused by linear and nonlinear autocorrelations. A new quantifier based on asymmetry of the Tsallis index instead of skewness of distribution is proposed which we believe is able to describe the stage of market development and its robustness to speculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.