Linear accelerators, like the Free-electron LASer in Hamburg (FLASH) or the European X-Ray Free Electron Laser (E-XFEL) take advantage of the digital Low Level Radio Frequency (LLRF) system to control the phase and amplitude of an electromagnetic field inside superconducting cavities. The real-time control LLRF system, processing data within a few microseconds, has to fulfil performance requirements and provide comprehensive monitoring and diagnostics. The AMC-based controller (DAMC-TCK7) board was developed as a general purpose high-performance low-latency data processing unit designed according to the PICMG MTCA.4 spec. The module provides the processing power, data memory, communication links, reference clock, trigger and interlock signals that are required in modern LLRF control systems. The module was originally designed as a cavity field stabilizing controller for standing-wave linear accelerators. However, the application of the board is much wider because it is a general purpose data processing module suitable for systems requiring low latency and high-speed digital signal processing. According to authors' knowledge this is the first MTCA.4 module offering 12.5 Gbps links, unified Zone 3 connectivity and advanced Module Management Controller proposed by DESY. The DAMC-TCK7 card was used as a hardware template for the development of the other AMC modules of the XFEL accelerator's LLRF system. This paper discusses the requirements for the digital real-time data processing module, presents the laboratory performance evaluation and verification in Cryo-Module Test Bench (CMTB) at DESY.Index Terms-Data processing module, high-energy physics, linear accelerator, low level radio frequency control system, micro telecommunications computing architecture, MicroTCA enhancements for rear I/O and precision timing, Zone 3 connector classes.
In the version of this Article originally published, the surname of the author N. Johansson was misspelled as 'Johannson'. In addition, in affiliation 17, "University of Łódź" was incorrect; it should have read "Łódź University of Technology". These errors have been corrected in the online versions of the Article and its Supplementary Information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.