clear cell renal cell carcinoma (ccRcc) is the most common kidney cancer. prognosis for ccRcc is generally poor since it is largely resistant to chemo-and radiotherapy. Many studies suggested that cancer stem cells/tumor initiating cells (CSCs/TICs) are responsible for development of tumor, disease progression, aggressiveness, metastasis and drug resistance. However, tumorigenic potential of CSCs/ tics isolated from established Rcc cell lines-basic ccRcc research model-has never been investigated in vivo. CD105+, CD105−, CD44+ and CD44− as well as CD44−/CD105− CD44+/CD105+ and CD44−/ CD105+ cells were isolated from Caki-1 RCC cell line, confirming coexistence of multiple subpopulations of stem-related phenotype in stable cell line. Sorted cells were injected subcutaneously into noD SciD mice and tumor growth was monitored with MRi and pet/ct. tumor growth was observed after implantation of CD105+, CD44+, CD44−, CD44−/CD105+ and CD44−/CD105− but not CD105− or CD44+/CD105+. Implantation of CD44−/CD105− cells induced tumors that were characterized by longer T1 and distinct metabolic pattern than other tumors. All the tumors were characterized by low uptake of [18F]FDG. CD105+ and CD44− tumors expresses Nanog and Oct-4, while CD44− tumors additionally expressed endothelial cell marker-CD31. Renal cell carcinoma (RCC), is the 10th malignancy worldwide and the most frequent type of kidney cancer in adults. Each year in Europe approximately 88 400 patients are diagnosed with RCC; the incidence and mortality of RCC are rising at a rate of 2-3% per decade, therefore novel therapies directed against RCC are needed. At the same time despite advancements in diagnostic techniques, up to 30% of newly diagnosed patients already present with metastases, and a large portion of patients that undergo surgical treatment experience the RCC recurrence, therefore drugs targeted against metastasis initiating cells would be of great interest in the future 1,2. Cancer stem cells (CSCs) are characterized by the potential to self-renew, high tumorigenicity in nude mice and the ability to efficiently reconstitute all tumor subpopulations and primary tumor phenotype 3-5. CSCs are also responsible not only for cancer development, but also for disease recurrence, progression and metastatic spread, together with cancer aggressiveness, including treatment resistance such as chemo/radiotherapy, and targeted treatment 6,7 , therefore basic research with careful model selection to understand their biology is mandatory to define novel potential therapeutic targets for all RCC subtypes 8,9 .
Objective. Bone defects or atrophy may arise as a consequence of injury, inflammation of various etiologies, and neoplastic or traumatic processes or as a result of surgical procedures. Sometimes the regeneration process of bone loss is impaired, significantly slowed down, or does not occur, e.g., in congenital defects. For the bone defect reconstruction, a piece of the removed bone from ala of ilium or bone transplantation from a decedent is used. Replacement of the autologous or allogenic source of the bone-by-bone substitute could reduce the number of surgeries and time in the pharmacological coma during the reconstruction of the bone defect. Application of mesenchymal stem cells in the reconstruction surgery may have positive influence on tissue regeneration by secretion of angiogenic factors, recruitment of other MSCs, or differentiation into osteoblasts. Materials and Methods. Mesenchymal stem cells derived from the umbilical cord (Wharton’s jelly (WJ-MSC)) were cultured in GMP-grade DMEM low glucose supplemented with heparin, 10% platelet lysate, glucose, and antibiotics. In vitro WJ-MSCs were seeded on the bone substitute Bio-Oss Collagen® and cultured in the StemPro® Osteogenesis Differentiation Kit. During the culture on the 1st, 7th, 14th, and 21st day (day in vitro (DIV)), we analyzed viability (confocal microscopy) and adhesion capability (electron microscopy) of WJ-MSC on Bio-Oss scaffolds, gene expression (qPCR), and secretion of proteins (Luminex). In vivo Bio-Oss® scaffolds with WJ-MSC were transplanted to trepanation holes in the cranium to obtain their overgrowth. The computed tomography was performed 7, 14, and 21 days after surgery to assess the regeneration. Results. The Bio-Oss® scaffold provides a favourable environment for WJ-MSC survival. WJ-MSCs in osteodifferentiation medium are able to attach and proliferate on Bio-Oss® scaffolds. Results obtained from qPCR and Luminex® indicate that WJ-MSCs possess the ability to differentiate into osteoblast-like cells and may induce osteoclastogenesis, angiogenesis, and mobilization of host MSCs. In animal studies, WJ-MSCs seeded on Bio-Oss® increased the scaffold integration with host bone and changed their morphology to osteoblast-like cells. Conclusions. The presented construct consisted of Bio-Oss®, the scaffold with high flexibility and plasticity, approved for clinical use with seeded immunologically privileged WJ-MSC which may be considered reconstructive therapy in bone defects.
The aim of this study was to evaluate hypoxia level at various tumor developmental stages and to compare various methods of hypoxia evaluation in pre-clinical CT26 tumor model.Using three methods of hypoxia determination, we evaluated hypoxia levels during CT26 tumor development in BALB/c mice from day 4 till day 19, in 2–3 days intervals. Molecular method was based on the analysis of selected genes expression related to hypoxia (HIF1A, ANGPTL4, TGFB1, VEGFA, ERBB3, CA9) or specific for inflammation in hypoxic sites (CCL2, CCL5) at various time points after CT26 cancer cells inoculation. Imaging methods of hypoxia evaluation included: positron-emission tomography (PET) imaging using [18F]fluoromisonidazole ([18F]FMISO) and a fluorescence microscope imaging of pimonidazole (PIMO)-positive tumor areas at various time points.Our results showed that tumor hypoxia at molecular level was relatively high at early stage of tumor development as reflected by initially high HIF1A and VEGFA expression levels and their subsequent decrease. However, imaging methods (both PET and fluorescence microscopy) showed that hypoxia increased till day 14 of tumor development. Additionally, necrotic regions dominated the tumor tissue at later stages of development, decreasing the number of hypoxic areas and completely eliminating normoxic regions (observed by PET).These results showed that molecular methods of hypoxia determination are more sensitive to show changes undergoing at cellular level, however in order to measure and visualize hypoxia in the whole organ, especially at later stages of tumor development, PET is the preferred tool. Furthermore we concluded, that during development of tumor, two peaks of hypoxia occur.
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1–0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.