In this paper, the authors used an acoustic wave acting as a disturbance (acoustic vibration), which travelled in all directions on the whole surface of a dried strawberry fruit in its specified area. The area of space in which the acoustic wave occurs is defined as the acoustic field. When the vibrating surface—for example, the surface of the belt—becomes the source, then one can observe the travelling of surface waves. For any shape of the surface of the dried strawberry fruit, the signal of travelling waves takes the form that is imposed by this irregular surface. The aim of this work was to research the effectiveness of recognizing the two trials in the process of convection drying on the basis of the acoustic signal backed up by neural networks. The input variables determined descriptors such as frequency (Hz) and the level of luminosity (dB). During the research, the degree of crispiness relative to the degree of maturity was compared. The results showed that the optimal neural model in respect of the lowest value of the root mean square turned out to be the Multi-Layer Perceptron network with the technique of dropping single fruits into water (data included in the learning data set Z2). The results confirm that the choice of method can have an influence on the effectives of recognizing dried strawberry fruits, and also this can be a basis for creating an effective and fast analysis tool which is capable of analyzing the degree of ripeness of fruits including their crispness in the industrial process of drying fruits.
Samples of triticale seeds of various qualities were assessed in the study. The seeds were obtained during experiments, reflecting the actual sowing conditions. The experiments were conducted on an original test facility designed by the authors of this study. The speed of the air (15, 20, 25 m/s) transporting seeds in the pneumatic conduit was adjusted to sowing. The resulting graphic database enabled the distinction of six classes of seeds according to their quality and sowing speed. The database was prepared to build training, validation and test sets. The neural model generation process was based on multi-layer perceptron networks (MLPN) and statistical (machine training). When the MLPN was used to identify contaminants in seeds sown at a speed of 15 m/s, the lowest RMS error of 0.052 was noted, whereas the classification correctness coefficient amounted to 0.99.
The research methodology consists of several stages to develop a noninvasive method of identifying the turgor of potato tubers during the storage. During the first stage, a graphic database (set of training data) has been created for selected varieties of potatoes. As a next step, special proprietary software called ’PID system’ was used together with a commercial MATLAB package to extract parameters defining the digital image descriptors. This included: hue space models, shape coefficient and image texture. Thirdly, Artificial Neural Network (ANN) training was conducted with the use of Statistica and MATLAB tools. As a result of the analysis, a neural model has been obtained, which had the greatest classification features.
The study concentrates on researching possibilities of using computer image analysis and neural modeling in order to assess selected quality discriminants of spray-dried chokeberry powder. The aim of the paper is the quality identification of chokeberry powders on account of their highest dying power, the highest bioactivity, as well as technologically satisfying looseness of the powder. The article presents neural models with vision techniques backed up by devices such as digital cameras, as well as an electron microscope. The reduction in size of input variables with PCA has an influence on improving the processes of learning data sets, thus increasing the effectiveness of identifying chokeberry fruit powders included in digital pictures, which is shown in the results of the conducted research. The effectiveness of image recognition is presented by classifying abilities, as well as low Root Mean Square Error (RMSE), for which the best results are achieved with a typology of network type Multi-Layer Perceptron (MLP). The selected networks type MLP are characterized by the highest degree of classification at 0.99 and RMSE at 0.11 at most at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.