The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.
Direct numerical simulation and large-eddy simulation have been performed for a heated sphere at Reynolds numbers of Re " 1000 and Re " 10 4 , respectively.The Prandtl number for both simulations has been P r " 0.7. Measurements of the local and average Nusselt number are performed and compared with literature available experimental results. Average and front stagnation point Nusselt numbers increase with the Reynolds number, while the minimum value moves towards the sphere apex as the flow enters the sub-critical regime. Differences in both viscous and thermal boundary layers are observed, while the shape factor at Reynolds number Re " 10 4 behaves similarly to that observed in circular cylinders at comparable Reynolds numbers. It is shown that as the Reynolds number increases, the increase in turbulent kinetic energy promotes the entrainment of irrotational flow thus enhancing the temperature mixing in the zone.The near wake, between 5 ď x{D ď 15, spreads at a faster rate at Re " 1000 with a slope close to x{D 1{2 , while at Re " 10 4 it follows a trend close to x{D 1{3 .
The objective of this paper is to show the first results obtained with a gas sensor made of Au-functionalized WO 3 nanoneedles working under a closed-loop control designed to reduce its time response. The average temperature applied to the sensor is modulated to keep constant the average surface potential of the sensing nanostructures. This is done by periodically monitoring the resistivity of the sensing layer and generating temperature waveforms that enforce the condition: constant resistivity of the sensing layer at a reference temperature.Changes induced by the target gases must be compensated by changes in the average temperature being applied to the sensing layer. This signal, the average temperature applied to the sensor, is the new sensor output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.