Bismuth-doped fibre amplifiers offer an attractive solution for expanding the bandwidth of fibre-optic telecommunication systems beyond the current C-band (1530-1565 nm). We report a bismuth-doped fibre amplifier in the spectral range from 1370 to 1490 nm, with a maximum gain exceeding 31 dB, and a noise figure as low as 4.75 dB. The developed system is studied for forward, backward, and bi-directional pumping schemes and three different signal power levels. The forward pumping scheme demonstrates the best performance in terms of the achieved noise figure. The developed amplifier can be potentially used as an in-line amplifier with >20dB gain in the spectral band from 1405 to 1460 nm.
Relative intensity noise transfer from the pump to the signal in 2nd-order ultra-long Raman laser amplifiers for telecommunications is characterized numerically and experimentally. Our results showcase the need for careful adjustment of the front FBG reflectivity and the relative contribution of forward pump power, and their impact on performance. Finally, our analysis is verified through a 10 × 30 GBaud DP-QPSK transmission experiment, showing a large Q factor penalty associated with the combination of high forward pumping and high reflectivities.
Optical communication systems, operating in C-band, are reaching their theoretically achievable capacity limits. An attractive and economically viable solution to satisfy the future data rate demands is to employ the transmission across the full low-loss spectrum encompassing O, E, S, C and L band of the single mode fibers (SMF). Utilizing all five bands offers a bandwidth of up to ∼53.5 THz (365 nm) with loss below 0.4 dB/km. A key component in realizing multi-band optical communication systems is the optical amplifier. Apart from having an ultra-wide gain profile, the ability of providing arbitrary gain profiles, in a controlled way, will become an essential feature. The latter will allow for signal power spectrum shaping which has a broad range of applications such as the maximization of the achievable information rate × distance product, the elimination of static and lossy gain flattening filters (GFF) enabling a power efficient system design, and the gain equalization of optical frequency combs. In this paper, we experimentally demonstrate a multiband (S+C+L) programmable gain optical amplifier using only Raman effects and machine learning. The amplifier achieves >1000 programmable gain profiles within the range from 3.5 to 30 dB, in an ultra-fast way and a very low maximum error of 1.6 • 10 −2 dB/THz over an ultrawide bandwidth of 17.6-THz (140.7-nm). Index Terms-optical communications, multi-band systems, optical amplifiers, machine learning, neural networks. I. INTRODUCTION O VER the past two decades, a great evolution of optical communication systems, in terms of spectral efficiency×distance product, has been enabled by the advances in digital coherent detection. So far, most of the efforts, on reaching the capacity of the nonlinear fiber-optic channel, have been focusing on the C-band
We present a broadband (>70nm), dual stage, discrete Raman amplifier designed with small and standard core fibres to maximize gain and minimize nonlinearity. The amplifier provides ~19.5dB net gain, 22.5dBm saturation output power and a noise figure of <7.2dB. 120Gb/s DP-QPSK transmission over 38x80km at a pre-FEC BER <3.8x10 is demonstrated.
We characterise the linear and nonlinear noise of dual stage broadband discrete Raman amplifiers (DRAs) based on conventional Raman gain fibres. Also, we propose an optimised dual stage DRA setup that lowers the impact of nonlinear noise (generated in the amplifier) on the performance of a transmission link (with 100km amplifier spacing). We numerically analyse the design of a backward pumped cascaded dual stage 100nm DRA with high gain (~20dB) and high saturated output power (>23dBm). We show that the noise figure (NF) of the dual stage DRA is mainly dominated by the first stage irrespective of the type of gain fibre chosen in the second stage, and we also demonstrate that optimising the length and the type of Raman gain fibre can have significant impact on the size of inter/intra signal nonlinearities generated. Here, we report a theoretical model to calculate the nonlinear noise power generated in transmission spans with dual stage DRAs considering piecewise signal power evolution through the Raman gain fibres. The predicted signal to noise ratio (SNR) performances are calculated from the combined contributions from NF and nonlinear product power obtained using the proposed analytical model for transmission systems deployed with 100km transmission span compensated by different dual stage DRAs. Finally, an optimised IDF 6km-SMF 10km dual stage configuration has been identified using the theoretical model, which allows maximum SNR of 14.6dB at 1000km for 1THz Nyquist WDM signal and maximum transmission reach of 3400km at optimum launch power assuming 8.5dB HD-FEC limit of the Nyquist PM-QPSK signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.