Energy efficiency is one of the most important topics nowadays. It is strictly related to energy demand, energy policy, environmental pollution, and economic issues. Energy efficiency can be increased and operating costs reduced by using waste heat from other processes. One of the possibilities is to use sorption chillers to produce chilled water and desalinated water. Low-temperature waste heat is not easy to utilize because of the low energy potential. Using adsorption chillers in low-temperature conditions allows utilizing waste heat and producing useful products in many regions of the world. The paper presents the results of an experimental study carried out on a three-bed adsorption chiller with desalination function, using silica gel and water as a working pair. The laboratory test stand included one evaporator, one condenser, and three separate tanks for water, desalinated water, and brine, respectively. The test stands scheme and description were presented. All results were obtained during several test hours with stable temperature conditions in the range of 57–85 °C for the heating water. It is found that the Coefficient of Performance (COP) increased from 0.20 to 0.58 when the heating water temperature increased from 57 to 85 °C. A similar finding is reported for Specific Cooling Power (SCP), which increased from 27 to 160 W/kg as the heating water temperature increased from 57 to 85 °C. It can be concluded that the heating water temperature strongly impacts the performance of the adsorption chiller.
Energy efficiency is one of the most important topics nowadays. It is strictly related to the problem of energy demand, energy policy, environmental pollution, and economic issues. Because of the technological development, using more advanced processes in almost every part of industry, and increasing demands both for a high standard of living and simplification of processes, the energy demand is growing. This can be observed, e.g., in the building sector – air conditioning is present in almost every new building and people expect high quality thermal conditions. Energy efficiency can be increased and operation costs reduced by using waste heat in other processes. One of the possibilities is to use sorption chillers to produce cool and desalinated water. The paper presents the results of experimental study carried out on three-bed adsorption chiller with desalination, using silica gel and water as the working pair. The chiller was equipped with plate-fin tube heat exchanger filled with silica gel with a grain size of 0.5-1.5 mm. The laboratory test stand included one evaporator, one condenser, and three separate tanks for water, desalinated water, and brine, respectively. The test stand scheme and description were presented. All results were obtained during a few hours test with stable temperature conditions in the range of: 55-85°C for the heating water.
The article presents experimental results of the metal-based and carbon nanotube additives influence on sorption kinetics of a silica-gel-based adsorption bed in an adsorption chiller. The purpose of the doping is to improve the efficiency of sorption processes within the bed by use of metallic and non-metallic additives characterized by higher thermal diffusivity than basic adsorption material. The higher the thermal conductivity of the bed, the faster the sorption processes take place, which directly translates into greater efficiency of the refrigerator. In this study, sorption kinetics of pure silica gel sorbent doped with a given amount of aluminum (Al) and copper (Cu) powders and carbon nanotubes (CNT) were analyzed. The tests were performed on DVS Dynamic Gravimetric Vapor Sorption System apparatus used for dynamic vapor sorption measurements. A decrease in the amount of adsorbed water was observed with an increase in the mass share of the additives in the performed studies. Experimental results show that, CNTs seems to be the most promising additive as the sorption process time was reduced with the smallest decrease in water uptake. Any significant reduction of adsorption time was noted in case of the Al addition. Whereas, in case of Cu doping, delamination of the mixture was observed.
Forecasts to 2030 indicate that demand for electricity will increase from 2% to 3% per year, and due to the observed high rate of development of the world economy, energy demand will continue to increase. More efficient use of primary energy has influence on reduction emissions and consumption of fuel. Besides, reducing the amount of fuel burned, it reveals a beneficial effect on the environment. Since extraction-back pressure turbines have some limitations, including the restriction of electricity production due to limited heat consumption in summer. The paper discusses the possibilities of integrating the adsorption aggregate with a combined cycle gas turbine and its impact on the operation of all devices. Simulations are performed on Sim tech IPSEPro software. The obtained results confirm that the adsorption aggregate, using a low grade of thermal energy, does not affect the operation of the gas and steam cycle and allows the production of electricity at a constant level. The calculated chemical fuel energy utilisation factor was 85.7% in cogeneration and 75.6% in trigeneration. These factors indicated a reduced utilisation of chemical fuel energy; however, this reduction is caused by a lower COP for adsorption chillers. Besides, the adsorption aggregate additionally generates chilled water for air conditioning or other technological processes, which stands for an added value of the innovative concept proposed in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.